Acknowledgement
Supported by : Architecture and Building Research Institute (ABRI)
References
- ACI Committee 544 (1982), "State of the art report of fiber reinforced concrete", Concr. Int.: Des. Construct., 4(5), 9-30.
- ACI-318 (2014), Building code requirements for reinforced concrete and commentary; American Concrete Institute, Farmington Hills, MI, USA.
- Aslani, F., Uy, B., Tao, Z. and Mashiri, F. (2015), "Predicting the axial load capacity of high-strength concrete filled steel tubular columns", Steel Compos. Struct., Int. J., 19(4), 967-993. https://doi.org/10.12989/scs.2015.19.4.967
- Atkinson, T. (2004), "Polypropylene fibers control explosive spalling in high performance concrete", Concrete, 38(10), 69-70.
- Bilodeau, A., Kodur, V.K.R. and Hoff, G.C. (2004), "Optimization of the type and amount of polypropylene fibres for preventing the spalling of lightweight concrete subjected to hydrocarbon fire", Cement Concrete Compos., 26(2), 163-174. https://doi.org/10.1016/S0958-9465(03)00085-4
- Castillo, C. and Durrani, A.J. (1990), "Effect of transient high temperature on high-strength concrete", ACI Mater. J., 87(1), 47-53.
- Chakrabari, S.C., Sharma, K.N. and Mittal, A. (1994), "Residual strength in concrete after exposure to elevated temperature", Indian Concrete J., December, 713-717.
- Ding, J. and Wang, Y.C. (2008), "Realistic modelling of thermal and structural behaviour of unprotected concrete filled tubular columns in fire", J. Constr. Steel Res., 64(10), 1086-1102. https://doi.org/10.1016/j.jcsr.2007.09.014
- Ding, Y., Azevedo, C., Aguiar, J.B. and Jalali, S. (2012), "Study on residual behaviour and flexural toughness of fibre cocktail reinforced self compacting high performance concrete after exposure to high temperature", Constr. Build. Mater., 26(1), 21-31. https://doi.org/10.1016/j.conbuildmat.2011.04.058
- Ekmekyapar, T. (2016), "Experimental performance of concrete filled welded steel tube columns", J. Constr. Steel Res., 117, 175-184. https://doi.org/10.1016/j.jcsr.2015.10.013
- Espinos, A., Hospitaler, A. and Romero, M.L. (2009), "Fire resistance of axially loaded slender concrete filled steel tubular columns", Acta Polytechnica, 49(1), 39-43.
- Eurocode 2 (2004), Design of concrete structures. Part 1-2: general rules-structural fire design; European Committee for Standardization, Brussels, Belgium.
- Eurocode 4 (2005), Design of composite steel and concrete structures-Part 1-2: General-Structural fire design.
- Hachemi, S., Ounis, A. and Chabi, S. (2014), "Evaluating residual mechanical and physical properties of concrete at elevated temperatures", Int. J. Civil, Environ., Struct., Constr. Architect. Eng., 8(2), 176-181.
- Han, LH., Yao, G.H. and Zhao, X.L. (2005), "Tests and calculations for hollow structural steel (HSS) stub columns filled with self-consolidating concrete (SCC)", J. Constr. Steel Res., 61(9), 1241-1269. https://doi.org/10.1016/j.jcsr.2005.01.004
- Hannant, D.J. (1998), "Durability of polypropylene fibers in Portland cement-based composites: Eighteen years of data", Cement Concrete Res., 28(12), 1809-1817. https://doi.org/10.1016/S0008-8846(98)00155-0
- Hong, S. and Varma, A.H. (2009), "Analytical modeling of the standard fire behavior of loaded CFT columns", J. Constr. Steel Res., 65, 54-69. https://doi.org/10.1016/j.jcsr.2008.04.008
-
Janotka, I. and Bagel, L. (2003), "Pore structures, permeabilities and compressive strengths of concrete at temperatures up to
$800^{\circ}C$ ", ACI Mater J, 100(1), 87-89. - Khan, Q.S., Sheikh, M.N. and Hadi, M.N.S. (2016), "Axial compressive behaviour of circular CFFT: Experimental database and design-oriented model", Steel Compos. Struct., Int. J., 21(4), 921-947. https://doi.org/10.12989/scs.2016.21.4.921
- Kim, D.K., Choi, S.M., Kim, J.H., Chung, K.S. and Park, S.H. (2005), "Experimental study on fire resistance of concrete-filled steel tube column under constant axial loads", Steel Struct., 5(4), 305-313. https://doi.org/10.12989/scs.2005.5.4.305
- Kim, N.W., Lee, H.H. and Kim, C.H. (2016), "Fracture behavior of hybrid fiber reinforced concrete according to the evaluation of crack resistance and thermal", Computers Concrete, 18(5), 685-696.
- Kodur, V.K.R. (1999), "Performance-based fire resistance design of concrete-filled steel columns", J. Constr. Steel Res., 51(1), 21-36. https://doi.org/10.1016/S0143-974X(99)00003-6
- Kodur, V.K.R. (2007), "Guidelines for fire resistant design of concrete-filled steel HSS columns-state-of-the-art and research needs", Steel Struct., 7(3), 173-182.
- Kodur, V. (2014), "Properties of concrete at elevated temperatures", ISRN Civil Engineering Volume, Article ID 468510.
- Kodur, V.K.R. and Sultan, M.A. (2003), "Effect of temperature on thermal properties of high-strength concrete", J. Mater. Civil Eng., 5(2), 101-107.
- Kodur, V.K.R., Wang, T.C. and Cheng, F.P. (2004), "Predicting the fire resistance behavior of high strength concrete columns", Cement Concrete Compos., 26(2), 141-153. https://doi.org/10.1016/S0958-9465(03)00089-1
- Krenchel, H. (1974), Fiber Reinforced Concrete, ACI SP-44, pp. 45-77.
- Larbi, J.A. and Polder, R.B. (2007), "Effects of polypropylene fibres in concrete: Microstructure after fire testing and chloride migration", Heron, 52(4), 289-306.
- Lee, H.H. and Yi, S.T. (2016), "Structural performance evaluation of steel fiber reinforced concrete beams with recycled aggregates", Comput. Concrete, 18(5), 741-756.
- Li, X. and Bu, F. (2011), "Residual strength for concrete after exposure to high temperatures", Innov. Comput. Info., 232, 382-390.
- Lie, T.T. and Kodur, V.K.R. (1996), "Fire resistance of steel columns filled with bar-reinforced concrete", ASCE J. Struct. Eng., 122(1), 30-36. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:1(30)
- Liu, B., Tong, L. and Zhao, X.L. (2014), "Fatigue failure characteristics of steel reinforced concrete girders", Procedia Mater. Sci., 3, 1717-1722. https://doi.org/10.1016/j.mspro.2014.06.277
- Mago, N. and Hicks, S.J. (2016), "Fire behaviour of slender, highly utilized, eccentrically loaded concrete filled tubular columns", J. Constr. Steel Res., 119, 123-132. https://doi.org/10.1016/j.jcsr.2015.12.002
- Metha, P.K. and Monteiro, P.J.M. (2006), Concrete; Microstructure, Properties and Materials, (3rd Edition), McGraw-Hill, New York, NY, USA.
- Mundhada, A.R. and Pofale, A.D. (2015), "Effect of high temperature on compressive strength of concrete", IOSR J. Mech. Civil Eng., 12(1), 66-70.
- Naaman, A.E. (1985), "Fiber reinforcement for concrete", ACI Concrete Int., 7(3), 21-25.
- Ozawa, M. and Morimoto, M. (2014), "Effects of various fibres on high-temperature spalling in high-performance concrete", Constr. Build. Mater., 71, 83-92. https://doi.org/10.1016/j.conbuildmat.2014.07.068
- Ozawa, M., Bo, Z., Uchida, Y. and Morimoto, H. (2014), "Preventive Effects of Fibers on Spalling of UFC at High Temperatures", J. Struct. Fire Eng., 5(3), 229-238. https://doi.org/10.1260/2040-2317.5.3.229
- Phan, L.T. and Carino, N.J. (1998), "Review of mechanical properties of HSC at elevated temperature", J. Mater. Civil Eng., 10(1), 58-64. https://doi.org/10.1061/(ASCE)0899-1561(1998)10:1(58)
- Phan, L.T. and Carino, N.J. (2002), "Effects of test conditions and mixture proportions on behavior of high-strength concrete exposed to high temperatures", ACI Mater. J., 99(1), 54-66.
- Poon, C.S., Shui, Z.H. and Lam, L. (2004), "Compressive behavior of fiber reinforced high performance concrete subjected to elevated temperature", Cement Concrete Res., 34(12), 2215-2222. https://doi.org/10.1016/j.cemconres.2004.02.011
- Purkiss, J.A. (2007), Fire safety engineering design of structures, Butterworth-Heinemann, Elsevier, Oxoford, UK.
- Qu, X., Chen, Z., Nethercot, D.A., Gardner, L. and Theofanous, M. (2015), "Push-out tests and bond strength of rectangular CFST columns", Steel Compos. Struct., Int. J., 19(1), 21-41. https://doi.org/10.12989/scs.2015.19.1.021
- Sanjayan, G. and Stocks, L.J. (1993), "Spalling of high-strength silica fume concrete in fire", ACI Mater. J., 90(2), 170-173.
- Sideris, K.K., Manita, P. and Chaniotakis, E. (2009), "Performance of thermally damaged fiber reinforced concretes", Constr. Build. Mater., 23(3), 1232-1239. https://doi.org/10.1016/j.conbuildmat.2008.08.009
- Siddique, R. and Kaur, D. (2012), "Properties of concrete containing ground granulated blast furnace slag (GGBFS) at elevated temperatures", J. Adv. Res., 3(1), 45-51. https://doi.org/10.1016/j.jare.2011.03.004
- Somayaji, S. (2001), Civil engineering materials, Prentice Hall, Upper Siddle River, NJ, USA.
- Song, T.Y., Han, L.H. and Yu, H.X. (2010), "Concrete filled steel tube stub columns under combined temperature and loading", J. Constr. Steel Res., 66(3), 369-384. https://doi.org/10.1016/j.jcsr.2009.10.010
- Swamy, R.N. and Mangat, P.S. (1974), "Influence of fiber geometry on the properties of steel fiber reinforced concrete", Cem. Concr. Res., 4(3), 451-465. https://doi.org/10.1016/0008-8846(74)90110-0
- Taiwan Construction and Planning Agency (2004), Design Code and Commentary for Steel Reinforced Concrete Structures, Taipei. [In Chinese]
- Tao, Z., Ghannama, M., Song, T.Y. and Han, L.H. (2016), "Experimental and numerical investigation of concrete-filled stainless steel columns exposed to fire", J. Constr. Steel Res., 118, 120-134. https://doi.org/10.1016/j.jcsr.2015.11.003
- Tatnall, P.C. (2002), "Shortcrete in fires: Effects of fibers on explosive spalling", Shortcrete, 4(4), 10-12.
- Toumi, B., Resheidat, M., Guemmadi, Z. and Chabil, H. (2009), "Coupled effect of high temperature and heating time on the residual strength of normal and high-strength concretes", Jordan J. Civil Eng., 3(4), 322-330.
- Wan, C.Y. and Zha, X.X. (2016), "Nonlinear analysis and design of concrete-filled dual steel tubular columns under axial loading", Steel Compos. Struct., Int. J., 20(3), 571-597. https://doi.org/10.12989/scs.2016.20.3.571
- Xu, M., Hallinan, B. and Wille, K. (2016), "Effect of loading rates on pullout behavior of high strength steel fibers embedded in ultra-high performance concrete", Cement Concrete Compos., 70, 98-109. https://doi.org/10.1016/j.cemconcomp.2016.03.014
- Yan, Z., Shen, Y., Zhu, H., Li, X. and Lu, Y. (2015), "Experimental investigation of reinforced concrete and hybrid fibre reinforced concrete shield tunnel segments subjected to elevated temperature", Fire Safety J., 71, 86-99. https://doi.org/10.1016/j.firesaf.2014.11.009
Cited by
- Depth-dependent evaluation of residual material properties of fire-damaged concrete vol.20, pp.4, 2017, https://doi.org/10.12989/cac.2017.20.4.503
- Fire resistance of high strength concrete filled steel tubular columns under combined temperature and loading vol.27, pp.2, 2017, https://doi.org/10.12989/scs.2018.27.2.243
- Seismic behavior of SFRC shear wall with CFST columns vol.28, pp.5, 2017, https://doi.org/10.12989/scs.2018.28.5.527
- An efficient and novel strategy for control of cracking, creep and shrinkage effects in steel-concrete composite beams vol.70, pp.6, 2019, https://doi.org/10.12989/sem.2019.70.6.751
- Post-fire test of precast steel reinforced concrete stub columns under eccentric compression vol.33, pp.1, 2017, https://doi.org/10.12989/scs.2019.33.1.111
- Predicting the axial compressive capacity of circular concrete filled steel tube columns using an artificial neural network vol.35, pp.3, 2017, https://doi.org/10.12989/scs.2020.35.3.415
- Fire resistance and residual strength of reactive powder concrete Using metakaolin vol.36, pp.6, 2020, https://doi.org/10.12989/scs.2020.36.6.657
- Fire Performance of Continuous Steel-Concrete Composite Bridge Girders vol.25, pp.3, 2017, https://doi.org/10.1007/s12205-021-0985-x