Acknowledgement
Supported by : University of Kashan
References
- An, C. and Su, J. (2014), "Dynamic analysis of axially moving orthotropic plates: Integral transforms solution", Appl. Math. Comput., 228, 489-507.
- Banichuk, N., Jeronen, J., Neittaanmaki, P. and Tuovinen, T. (2010), "On the instability of an axially moving elastic plate", Int. J. Solids Struct., 47(1), 91-99. https://doi.org/10.1016/j.ijsolstr.2009.09.020
- Banichuk, N., Jeronen, J., Kurki, M., Neittaanmaki, P., Saksa, T. and Tuovinen, T. (2011), "On the limit velocity and buckling phenomena of axially moving orthotropic membranes and plates", Int. J. Solids Struct., 48(13), 2015-2025. https://doi.org/10.1016/j.ijsolstr.2011.03.010
- Ghayesh, M.H., Amabili, M. and Païdoussis, M.P. (2013), "Nonlinear dynamics of axially moving plates", J. Sound Vib., 332(2), 391-406. https://doi.org/10.1016/j.jsv.2012.08.013
- Ghorbanpour Arani, A. and Haghparast, E. (2016), "Sizedependent vibration of axially moving viscoelastic microplates based on sinusoidal shear deformation theory", Int. J. Appl. Mech.
- Ghorbanpour Arani, A., Haghparast, E. and Baba Akbar Zarei, H. (2016), "Vibration of axially moving 3-phase CNTFPC plate resting on orthotropic foundation", Struct. Eng. Mech., Int. J., 57(1), 105-126. https://doi.org/10.12989/sem.2016.57.1.105
- Gibson, R.F. (1994), Principles of Composite Material Mechanics, McGraw-Hill, Inc, New York, USA.
- Hatami, S., Azhari, M. and Saadatpour, M.M. (2007), "Free vibration of moving laminated composite plates", Compos. Struct., 80(4), 609-620. https://doi.org/10.1016/j.compstruct.2006.07.009
- Hatami, S., Ronagh, H.R. and Azhari, M. (2008), "Exact free vibration analysis of axially moving viscoelastic plates", Comput. Struct., 86(17), 1738-1746. https://doi.org/10.1016/j.compstruc.2008.02.002
- Kim, J., Cho, J., Lee, U. and Park, S. (2003), "Modal spectral element formulation for axially moving plates subjected to inplane axial tension", Comput. Struct., 81(20), 2011-2020. https://doi.org/10.1016/S0045-7949(03)00229-3
- Lin, C.C. (1997), "Stability and vibration characteristics of axially moving plates", Int. J. Solids Struct., 34(24), 3179-3190. https://doi.org/10.1016/S0020-7683(96)00181-3
- Marynowski, K. (2010), "Free vibration analysis of the axially moving Levy-type viscoelastic plate", Eur. J. Mech. A Solids, 29(5), 879-886. https://doi.org/10.1016/j.euromechsol.2010.03.010
- Marynowski, K. and Grabski, J. (2013), "Dynamic analysis of an axially moving plate subjected to thermal loading", Mech. Res. Commun., 51, 67-71. https://doi.org/10.1016/j.mechrescom.2013.05.004
- Mohammadimehr, M., Rousta Navi, B. and Ghorbanpour Arani, A. (2015), "Free vibration of viscoelastic double-bonded polymeric nanocomposite plates reinforced by FG-SWCNTs using MSGT, sinusoidal shear deformation theory and meshless method", Compos. Struct., 131, 654-671. https://doi.org/10.1016/j.compstruct.2015.05.077
- Tang, Y.Q. and Chen, L.Q. (2011), "Nonlinear free transverse vibrations of in-plane moving plates: Without and with internal resonances", J. Sound Vib., 330(1), 110-126. https://doi.org/10.1016/j.jsv.2010.07.005
- Tang, Y.Q. and Chen, L.Q. (2012), "Primary resonance in forced vibrations of in-plane translating viscoelastic plates with 3:1 internal resonance", Nonlinear Dyn., 69(1), 159-172. https://doi.org/10.1007/s11071-011-0253-6
- Wang, X. (1999), "Numerical analysis of moving orthotropic thin plates", Comput. Struct., 70(4), 467-486. https://doi.org/10.1016/S0045-7949(98)00161-8
- Wang, Z.X. and Shen, H.S. (2012), "Nonlinear vibration and bending of sandwich plates with nanotube-reinforced composite face sheets", Composites Part B, 43(2), 411-421. https://doi.org/10.1016/j.compositesb.2011.04.040
- Wang, C.M., Reddy, J.N. and Lee, K.H. (2000), Shear Deformable Beams and Plates, Elsevier.
- Yang, T. and Fang, B. (2013), "Asymptotic analysis of an axially viscoelastic string constituted by a fractional differentiation law", Int. J. Non-Linear Mech., 49, 170-174. https://doi.org/10.1016/j.ijnonlinmec.2012.10.001
- Yang, T., Fang, B., Chen, Y. and Zhen, Y. (2009), "Approximate solutions of axially moving viscoelastic beams subject to multifrequency excitations", Int. J. Non-Linear Mech., 44(2), 230-238 https://doi.org/10.1016/j.ijnonlinmec.2008.11.013
- Yang, X.D., Chen, L.Q. and Zu, J.W. (2011), "Vibrations and stability of an axially moving rectangular composite plate", J. Appl. Mech., 78(1), 11018-11028. https://doi.org/10.1115/1.4002002
- Yang, X.D., Zhang, W., Chen, L.Q. and Yao, M.H. (2012), "Dynamical analysis of axially moving plate by finite difference method", Nonlinear Dyn., 67(2), 997-1006. https://doi.org/10.1007/s11071-011-0042-2
- Yang, T., Fang, B., Yang, X.D. and Li, Y. (2013), "Closed-form approximate solution for natural frequency of axially moving beams", Int. J. Mech. Sci., 74, 154-160. https://doi.org/10.1016/j.ijmecsci.2013.05.010
- Zho, Y. and Wang, Z. (2008), "Vibrations of axially moving viscoelastic plate with parabolically varying thickness", J. Sound Vib., 316(1), 198-210. https://doi.org/10.1016/j.jsv.2008.02.040
- Zhu, P., Lei, Z.X. and Liew, K.M. (2012), "Static and free vibration analyses of carbon nanotube-reinforced compo-site plates using finite element method with first order shear deformation plate theory", Compos. Struct., 94(4), 1450-1460. https://doi.org/10.1016/j.compstruct.2011.11.010
Cited by
- Nonlinear free and forced vibration analysis of FG-CNTRC annular sector plates pp.02728397, 2019, https://doi.org/10.1002/pc.24998
- Vibration analysis of functionally graded rectangular plates partially resting on elastic supports using the first-order shear deformation theory and differential quadrature element method vol.41, pp.2, 2019, https://doi.org/10.1007/s40430-019-1600-7
- Large amplitude forced vibration of functionally graded nano-composite plate with piezoelectric layers resting on nonlinear elastic foundation vol.68, pp.2, 2017, https://doi.org/10.12989/sem.2018.68.2.203
- Three dimensional dynamic response of functionally graded nanoplates under a moving load vol.66, pp.2, 2017, https://doi.org/10.12989/sem.2018.66.2.249
- An efficient and simple refined theory for free vibration of functionally graded plates under various boundary conditions vol.16, pp.1, 2017, https://doi.org/10.12989/gae.2018.16.1.001
- The effect of porosity on free vibration of SPFG circular plates resting on visco-Pasternak elastic foundation based on CPT, FSDT and TSDT vol.70, pp.1, 2017, https://doi.org/10.12989/sem.2019.70.1.097
- Bending analysis of a micro sandwich skew plate using extended Kantorovich method based on Eshelby-Mori-Tanaka approach vol.23, pp.5, 2019, https://doi.org/10.12989/cac.2019.23.5.361
- Free vibration analysis of thick cylindrical MEE composite shells reinforced CNTs with temperature-dependent properties resting on viscoelastic foundation vol.70, pp.6, 2017, https://doi.org/10.12989/sem.2019.70.6.683
- Effect of Fluid-Structure Interaction on Vibration of Moving Sandwich Plate With Balsa Wood Core and Nanocomposite Face Sheets vol.12, pp.7, 2017, https://doi.org/10.1142/s1758825120500787
- Free vibration analysis of axially moving laminated beams with axial tension based on 1D refined theories using Carrera unified formulation vol.37, pp.1, 2017, https://doi.org/10.12989/scs.2020.37.1.037
- Forced vibration analysis of a micro sandwich plate with an isotropic/orthotropic cores and polymeric nanocomposite face sheets vol.28, pp.3, 2017, https://doi.org/10.12989/cac.2021.28.3.259
- Flexoelectric and surface effects on vibration frequencies of annular nanoplate vol.95, pp.10, 2021, https://doi.org/10.1007/s12648-020-01854-9