DOI QR코드

DOI QR Code

Effects of dietary leucine supplementation on the hepatic mitochondrial biogenesis and energy metabolism in normal birth weight and intrauterine growth-retarded weanling piglets

  • Su, Weipeng (College of Animal Science and Technology, Nanjing Agricultural University) ;
  • Xu, Wen (College of Animal Science and Technology, Nanjing Agricultural University) ;
  • Zhang, Hao (College of Animal Science and Technology, Nanjing Agricultural University) ;
  • Ying, Zhixiong (College of Animal Science and Technology, Nanjing Agricultural University) ;
  • Zhou, Le (College of Animal Science and Technology, Nanjing Agricultural University) ;
  • Zhang, Lili (College of Animal Science and Technology, Nanjing Agricultural University) ;
  • Wang, Tian (College of Animal Science and Technology, Nanjing Agricultural University)
  • Received : 2016.11.30
  • Accepted : 2017.01.09
  • Published : 2017.04.01

Abstract

BACKGROUND/OBJECTIVES: The study was conducted to evaluate the effects of dietary leucine supplementation on mitochondrial biogenesis and energy metabolism in the liver of normal birth weight (NBW) and intrauterine growth-retarded (IUGR) weanling piglets. MATERIALS/METHODS: A total of sixteen pairs of NBW and IUGR piglets from sixteen sows were selected according to their birth weight. At postnatal day 14, all piglets were weaned and fed either a control diet or a leucine-supplemented diet for 21 d. Thereafter, a $2{\times}2$ factorial experimental design was used. Each treatment consisted of eight replications with one piglet per replication. RESULTS: Compared with NBW piglets, IUGR piglets had a decreased (P < 0.05) hepatic adenosine triphosphate (ATP) content. Also, IUGR piglets exhibited reductions (P < 0.05) in the activities of hepatic mitochondrial pyruvate dehydrogenase (PDH), citrate synthase (CS), ${\alpha}$-ketoglutarate dehydrogenase (${\alpha}$-KGDH), malate dehydrogenase (MDH), and complexes I and V, along with decreases (P < 0.05) in the concentration of mitochondrial DNA (mtDNA) and the protein expression of hepatic peroxisome proliferator-activated receptor-${\gamma}$ coactivator $1{\alpha}$ (PGC-$1{\alpha}$). Dietary leucine supplementation increased (P < 0.05) the content of ATP, and the activities of CS, ${\alpha}$-KGDH, MDH, and complex V in the liver of piglets. Furthermore, compared to those fed a control diet, piglets given a leucine-supplemented diet exhibited increases (P < 0.05) in the mtDNA content and in the mRNA expressions of sirtuin 1, PGC-$1{\alpha}$, nuclear respiratory factor 1, mitochondrial transcription factor A, and ATP synthase, $H^+$ transporting, mitochondrial F1 complex, ${\beta}$ polypeptide in liver. CONCLUSIONS: Dietary leucine supplementation may exert beneficial effects on mitochondrial biogenesis and energy metabolism in NBW and IUGR weanling piglets.

Keywords

References

  1. Wu G, Bazer FW, Wallace JM, Spencer TE. Board-invited review: intrauterine growth retardation: implications for the animal sciences. J Anim Sci 2006;84:2316-37. https://doi.org/10.2527/jas.2006-156
  2. Valsamakis G, Kanaka-Gantenbein C, Malamitsi-Puchner A, Mastorakos G. Causes of intrauterine growth restriction and the postnatal development of the metabolic syndrome. Ann N Y Acad Sci 2006;1092:138-47. https://doi.org/10.1196/annals.1365.012
  3. Hock MB, Kralli A. Transcriptional control of mitochondrial biogenesis and function. Annu Rev Physiol 2009;71:177-203. https://doi.org/10.1146/annurev.physiol.010908.163119
  4. Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell 2005;120:483-95. https://doi.org/10.1016/j.cell.2005.02.001
  5. Park KS, Kim SK, Kim MS, Cho EY, Lee JH, Lee KU, Pak YK, Lee HK. Fetal and early postnatal protein malnutrition cause long-term changes in rat liver and muscle mitochondria. J Nutr 2003;133:3085-90. https://doi.org/10.1093/jn/133.10.3085
  6. Reusens B, Sparre T, Kalbe L, Bouckenooghe T, Theys N, Kruhoffer M, Orntoft TF, Nerup J, Remacle C. The intrauterine metabolic environment modulates the gene expression pattern in fetal rat islets: prevention by maternal taurine supplementation. Diabetologia 2008;51:836-45. https://doi.org/10.1007/s00125-008-0956-5
  7. Zhang H, Li Y, Hou X, Zhang L, Wang T. Medium-chain TAG improve energy metabolism and mitochondrial biogenesis in the liver of intra-uterine growth-retarded and normal-birth-weight weanling piglets. Br J Nutr 2016;115:1521-30. https://doi.org/10.1017/S0007114516000404
  8. Peterside IE, Selak MA, Simmons RA. Impaired oxidative phosphorylation in hepatic mitochondria in growth-retarded rats. Am J Physiol Endocrinol Metab 2003;285:E1258-66. https://doi.org/10.1152/ajpendo.00437.2002
  9. Lane RH, Flozak AS, Ogata ES, Bell GI, Simmons RA. Altered hepatic gene expression of enzymes involved in energy metabolism in the growth-retarded fetal rat. Pediatr Res 1996;39:390-4.
  10. Li F, Yin Y, Tan B, Kong X, Wu G. Leucine nutrition in animals and humans: mTOR signaling and beyond. Amino Acids 2011;41:1185-93. https://doi.org/10.1007/s00726-011-0983-2
  11. Wu G. Dietary requirements of synthesizable amino acids by animals: a paradigm shift in protein nutrition. J Anim Sci Biotechnol 2014;5:34. https://doi.org/10.1186/2049-1891-5-34
  12. Wilson J, Wilson GJ. Contemporary issues in protein requirements and consumption for resistance trained athletes. J Int Soc Sports Nutr 2006;3:7-27. https://doi.org/10.1186/1550-2783-3-1-7
  13. Garlick PJ. The role of leucine in the regulation of protein metabolism. J Nutr 2005;135:1553S-1556S. https://doi.org/10.1093/jn/135.6.1553S
  14. Patti ME, Brambilla E, Luzi L, Landaker EJ, Kahn CR. Bidirectional modulation of insulin action by amino acids. J Clin Invest 1998;101:1519-29. https://doi.org/10.1172/JCI1326
  15. Layman DK. The role of leucine in weight loss diets and glucose homeostasis. J Nutr 2003;133:261S-267S. https://doi.org/10.1093/jn/133.1.261S
  16. Li H, Xu M, Lee J, He C, Xie Z. Leucine supplementation increases SIRT1 expression and prevents mitochondrial dysfunction and metabolic disorders in high-fat diet-induced obese mice. Am J Physiol Endocrinol Metab 2012;303:E1234-44. https://doi.org/10.1152/ajpendo.00198.2012
  17. Vaughan RA, Garcia-Smith R, Gannon NP, Bisoffi M, Trujillo KA, Conn CA. Leucine treatment enhances oxidative capacity through complete carbohydrate oxidation and increased mitochondrial density in skeletal muscle cells. Amino Acids 2013;45:901-11. https://doi.org/10.1007/s00726-013-1538-5
  18. Sun X, Zemel MB. Leucine modulation of mitochondrial mass and oxygen consumption in skeletal muscle cells and adipocytes. Nutr Metab (Lond) 2009;6:26. https://doi.org/10.1186/1743-7075-6-26
  19. Xu W, Bai K, He J, Su W, Dong L, Zhang L, Wang T. Leucine improves growth performance of intrauterine growth retardation piglets by modifying gene and protein expression related to protein synthesis. Nutrition 2016;32:114-21. https://doi.org/10.1016/j.nut.2015.07.003
  20. Meurens F, Summerfield A, Nauwynck H, Saif L, Gerdts V. The pig: a model for human infectious diseases. Trends Microbiol 2012;20:50-7. https://doi.org/10.1016/j.tim.2011.11.002
  21. Institute of Laboratory Animal Resources (US). Guide for the Care and Use of Laboratory Animals. 7th ed. Washington, D.C.: National Academy Press; 1996.
  22. Wang Y, Zhang L, Zhou G, Liao Z, Ahmad H, Liu W, Wang T. Dietary L-arginine supplementation improves the intestinal development through increasing mucosal Akt and mammalian target of rapamycin signals in intra-uterine growth retarded piglets. Br J Nutr 2012;108:1371-81. https://doi.org/10.1017/S0007114511006763
  23. National Research Council (US), Committee on Nutrient Requirements of Swine; National Research Council (US), Board on Agriculture and Natural Resources. Nutrient Requirements of Swine. 11th rev. ed. Washington, D.C.: National Academy Press; 2012.
  24. Yi D, Hou Y, Wang L, Ding B, Yang Z, Li J, Long M, Liu Y, Wu G. Dietary N-acetylcysteine supplementation alleviates liver injury in lipopolysaccharide-challenged piglets. Br J Nutr 2014;111:46-54. https://doi.org/10.1017/S0007114513002171
  25. Atkinson DE. The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry 1968;7:4030-4. https://doi.org/10.1021/bi00851a033
  26. Weinbach EC. A procedure for isolating stable mitochondria from rat liver and kidney. Anal Biochem 1961;2:335-43. https://doi.org/10.1016/0003-2697(61)90006-9
  27. Nemeria N, Yan Y, Zhang Z, Brown AM, Arjunan P, Furey W, Guest JR, Jordan F. Inhibition of the Escherichia coli pyruvate dehydrogenase complex E1 subunit and its tyrosine 177 variants by thiamin 2-thiazolone and thiamin 2-thiothiazolone diphosphates. Evidence for reversible tight-binding inhibition. J Biol Chem 2001;276:45969-78. https://doi.org/10.1074/jbc.M104116200
  28. Shepherd D, Garland PB. The kinetic properties of citrate synthase from rat liver mitochondria. Biochem J 1969;114:597-610. https://doi.org/10.1042/bj1140597
  29. Meixner-Monori B, Kubicek CP, Harrer W, Schreferl G, Rohr M. NADP-specific isocitrate dehydrogenase from the citric acid-accumulating fungus Aspergillus niger. Biochem J 1986;236:549-57. https://doi.org/10.1042/bj2360549
  30. Lai JC, Cooper AJ. Brain alpha-ketoglutarate dehydrogenase complex: kinetic properties, regional distribution, and effects of inhibitors. J Neurochem 1986;47:1376-86. https://doi.org/10.1111/j.1471-4159.1986.tb00768.x
  31. Mehler AH, Kornberg A, Grisolia S, Ochoa S. The enzymatic mechanism of oxidation-reductions between malate or isocitrate and pyruvate. J Biol Chem 1948;174:961-77.
  32. Ragan CI. Structure and function of an archetypal respiratory chain complex: NADH-ubiquinone reductase. Biochem Soc Trans 1990;18:515-6. https://doi.org/10.1042/bst0180515
  33. Medja F, Allouche S, Frachon P, Jardel C, Malgat M, Mousson de Camaret B, Slama A, Lunardi J, Mazat JP, Lombes A. Development and implementation of standardized respiratory chain spectrophotometric assays for clinical diagnosis. Mitochondrion 2009;9:331-9. https://doi.org/10.1016/j.mito.2009.05.001
  34. Krahenbuhl S, Talos C, Wiesmann U, Hoppel CL. Development and evaluation of a spectrophotometric assay for complex III in isolated mitochondria, tissues and fibroblasts from rats and humans. Clin Chim Acta 1994;230:177-87. https://doi.org/10.1016/0009-8981(94)90270-4
  35. Wharton DC, Tzagoloff A. Cytochrome oxidase from beef heart mitochondria. Methods Enzymol 1967;10:245-50.
  36. Taussky HH, Shorr E. A microcolorimetric method for the determination of inorganic phosphorus. J Biol Chem 1953;202:675-85.
  37. Liu J, Yao Y, Yu B, Mao X, Huang Z, Chen D. Effect of folic acid supplementation on hepatic antioxidant function and mitochondrialrelated gene expression in weanling intrauterine growth retarded piglets. Livest Sci 2012;146:123-32. https://doi.org/10.1016/j.livsci.2012.02.027
  38. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001;29:e45. https://doi.org/10.1093/nar/29.9.e45
  39. D'Antona G, Ragni M, Cardile A, Tedesco L, Dossena M, Bruttini F, Caliaro F, Corsetti G, Bottinelli R, Carruba MO, Valerio A, Nisoli E. Branched-chain amino acid supplementation promotes survival and supports cardiac and skeletal muscle mitochondrial biogenesis in middle-aged mice. Cell Metab 2010;12:362-72. https://doi.org/10.1016/j.cmet.2010.08.016
  40. Ogata ES, Swanson SL, Collins JW Jr, Finley SL. Intrauterine growth retardation: altered hepatic energy and redox states in the fetal rat. Pediatr Res 1990;27:56-63. https://doi.org/10.1203/00006450-199001000-00017
  41. Lim S, Cho YM, Park KS, Lee HK. Persistent organic pollutants, mitochondrial dysfunction, and metabolic syndrome. Ann N Y Acad Sci 2010;1201:166-76. https://doi.org/10.1111/j.1749-6632.2010.05622.x
  42. Puigserver P, Spiegelman BM. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev 2003;24:78-90. https://doi.org/10.1210/er.2002-0012
  43. Liu J, Yu B, Mao X, He J, Yu J, Zheng P, Huang Z, Chen D. Effects of intrauterine growth retardation and maternal folic acid supplementation on hepatic mitochondrial function and gene expression in piglets. Arch Anim Nutr 2012;66:357-71. https://doi.org/10.1080/1745039X.2012.710084
  44. Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 2012;13:225-38. https://doi.org/10.1038/nrn3209
  45. Virbasius CA, Virbasius JV, Scarpulla RC. NRF-1, an activator involved in nuclear-mitochondrial interactions, utilizes a new DNA-binding domain conserved in a family of developmental regulators. Genes Dev 1993;7:2431-45. https://doi.org/10.1101/gad.7.12a.2431
  46. Ekstrand MI, Falkenberg M, Rantanen A, Park CB, Gaspari M, Hultenby K, Rustin P, Gustafsson CM, Larsson NG. Mitochondrial transcription factor A regulates mtDNA copy number in mammals. Hum Mol Genet 2004;13:935-44. https://doi.org/10.1093/hmg/ddh109
  47. Maniura-Weber K, Goffart S, Garstka HL, Montoya J, Wiesner RJ. Transient overexpression of mitochondrial transcription factor A (TFAM) is sufficient to stimulate mitochondrial DNA transcription, but not sufficient to increase mtDNA copy number in cultured cells. Nucleic Acids Res 2004;32:6015-27. https://doi.org/10.1093/nar/gkh921
  48. Simmons RA, Suponitsky-Kroyter I, Selak MA. Progressive accumulation of mitochondrial DNA mutations and decline in mitochondrial function lead to beta-cell failure. J Biol Chem 2005;280:28785-91. https://doi.org/10.1074/jbc.M505695200
  49. Morris TJ, Vickers M, Gluckman P, Gilmour S, Affara N. Transcriptional profiling of rats subjected to gestational undernourishment: implications for the developmental variations in metabolic traits. PLoS One 2009;4:e7271. https://doi.org/10.1371/journal.pone.0007271
  50. Tatpati LL, Irving BA, Tom A, Bigelow ML, Klaus K, Short KR, Nair KS. The effect of branched chain amino acids on skeletal muscle mitochondrial function in young and elderly adults. J Clin Endocrinol Metab 2010;95:894-902. https://doi.org/10.1210/jc.2009-1822
  51. Thomas PJ, Garboczi DN, Pedersen PL. Mutational analysis of the consensus nucleotide binding sequences in the rat liver mitochondrial ATP synthase beta-subunit. J Biol Chem 1992;267:20331-8.

Cited by

  1. Effects of medical food leucine content in the management of methylmalonic and propionic acidemias vol.21, pp.1, 2018, https://doi.org/10.1097/MCO.0000000000000428
  2. Transcriptome Analyses Reveal Adult Metabolic Syndrome With Intrauterine Growth Restriction in Pig Models vol.9, pp.1664-8021, 2018, https://doi.org/10.3389/fgene.2018.00291
  3. Effects of dietary leucine on antioxidant activity and expression of antioxidant and mitochondrial‐related genes in longissimus dorsi muscle and liver of piglets vol.90, pp.8, 2017, https://doi.org/10.1111/asj.13249
  4. Piceatannol Ameliorates Hepatic Oxidative Damage and Mitochondrial Dysfunction of Weaned Piglets Challenged with Diquat vol.10, pp.7, 2017, https://doi.org/10.3390/ani10071239
  5. Liver transcriptome profiling and functional analysis of intrauterine growth restriction (IUGR) piglets reveals a genetic correction and sexual-dimorphic gene expression during postnatal development vol.21, pp.1, 2017, https://doi.org/10.1186/s12864-020-07094-9