DOI QR코드

DOI QR Code

Effects of ginseng on two main sex steroid hormone receptors: estrogen and androgen receptors

  • Park, Joonwoo (Department of Bioscience and Biotechnology, College of Life Science, Sejong University) ;
  • Song, Heewon (Department of Bioscience and Biotechnology, College of Life Science, Sejong University) ;
  • Kim, Si-Kwan (Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University) ;
  • Lee, Myeong Soo (Clinical Research Division, Korea Institute of Oriental Medicine) ;
  • Rhee, Dong-Kwon (School of Pharmacy, Sungkyunkwan University) ;
  • Lee, YoungJoo (Department of Bioscience and Biotechnology, College of Life Science, Sejong University)
  • Received : 2016.03.16
  • Accepted : 2016.08.15
  • Published : 2017.04.15

Abstract

Ginseng has been used in China for at least two millennia and is now popular in over 35 countries. It is one of the world's popular herbs for complementary and alternative medicine and has been shown to have helpful effects on cognition and blood circulation, as well as anti-aging, anti-cancer, and anti-diabetic effects, among many others. The pharmacological activities of ginseng are dependent mainly on ginsenosides. Ginsenosides have a cholesterol-like four trans-ring steroid skeleton with a variety of sugar moieties. Nuclear receptors are one of the most important molecular targets of ginseng, and reports have shown that members of the nuclear receptor superfamily are regulated by a variety of ginsenosides. Here, we review the published literature on the effects of ginseng and its constituents on two main sex steroid hormone receptors: estrogen and androgen receptors. Furthermore, we discuss applications for sex steroid hormone receptor modulation and their therapeutic efficacy.

Keywords

References

  1. Baeg IH, So SH. The world ginseng market and the ginseng (Korea). J Ginseng Res 2013;37:1-7. https://doi.org/10.5142/jgr.2013.37.1
  2. Park HJ, Kim DH, Park SJ, Kim JM, Ryu JH. Ginseng in traditional herbal prescriptions. J Ginseng Res 2012;36:225-41. https://doi.org/10.5142/jgr.2012.36.3.225
  3. Kim MK, Lee JW, Lee KY, Yang DC. Microbial conversion of major ginsenoside rb(1) to pharmaceutically active minor ginsenoside rd. J Microbiol 2005;43:456-62.
  4. Kang S, Min H. Ginseng, the ‘immunity boost': the effects of Panax ginseng on immune system. J Ginseng Res 2012;36:354-68. https://doi.org/10.5142/jgr.2012.36.4.354
  5. Shin BK, Kwon SW, Park JH. Chemical diversity of ginseng saponins from Panax ginseng. J Ginseng Res 2015;39:287-98. https://doi.org/10.1016/j.jgr.2014.12.005
  6. Nah SY, Park HJ, McCleskey EW. A trace component of ginseng that inhibits Ca2+ channels through a pertussis toxin-sensitive G protein. Proc Natl Acad Sci U S A 1995;92:8739-43. https://doi.org/10.1073/pnas.92.19.8739
  7. Kim SK, Park JH. Trends in ginseng research in 2010. J Ginseng Res 2011;35:389-98. https://doi.org/10.5142/jgr.2011.35.4.389
  8. Lee DH, Cho HJ, Kim HH, Rhee MH, Ryu JH, Park HJ. Inhibitory effects of total saponin from Korean Red Ginseng via vasodilator-stimulated phosphoprotein-Ser(157) phosphorylation on thrombin-induced platelet aggregation. J Ginseng Res 2013;37:176-86. https://doi.org/10.5142/jgr.2013.37.176
  9. Siddiqi MH, Siddiqi MZ, Ahn S, Kang S, Kim YJ, Sathishkumar N, Yang DU, Yang DC. Ginseng saponins and the treatment of osteoporosis: mini literature review. J Ginseng Res 2013;37:261-8. https://doi.org/10.5142/jgr.2013.37.261
  10. Kang KS, Ham J, Kim YJ, Park JH, Cho EJ, Yamabe N. Heat-processed Panax ginseng and diabetic renal damage: active components and action mechanism. J Ginseng Res 2013;37:379-88. https://doi.org/10.5142/jgr.2013.37.379
  11. Lee S, Kim MG, Ko SK, Kim HK, Leem KH, Kim YJ. Protective effect of ginsenoside Re on acute gastric mucosal lesion induced by compound 48/80. J Ginseng Res 2014;38:89-96. https://doi.org/10.1016/j.jgr.2013.10.001
  12. Lee CH, Kim JH. A review on the medicinal potentials of ginseng and ginsenosides on cardiovascular diseases. J Ginseng Res 2014;38:161-6. https://doi.org/10.1016/j.jgr.2014.03.001
  13. Fishbein AB, Wang CZ, Li XL, Mehendale SR, Sun S, Aung HH, Yuan CS. Asian ginseng enhances the anti-proliferative effect of 5-fluorouracil on human colorectal cancer: comparison between white and red ginseng. Arch Pharm Res 2009;32:505-13. https://doi.org/10.1007/s12272-009-1405-9
  14. Du GJ, Wang CZ, Zhang ZY, Wen XD, Somogyi J, Calway T, He TC, Du W, Yuan CS. Caspase-mediated pro-apoptotic interaction of panaxadiol and irinotecan in human colorectal cancer cells. J Pharm Pharmacol 2012;64:727-34. https://doi.org/10.1111/j.2042-7158.2012.01463.x
  15. Baek SH, Piao XL, Lee UJ, Kim HY, Park JH. Reduction of cisplatin-induced nephrotoxicity by ginsenosides isolated from processed ginseng in cultured renal tubular cells. Biol Pharm Bull 2006;29:2051-5. https://doi.org/10.1248/bpb.29.2051
  16. Attele AS, Wu JA, Yuan CS. Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol 1999;58:1685-93. https://doi.org/10.1016/S0006-2952(99)00212-9
  17. Paik NH, Park MK, Choi KJ, Cho YH. Isolation of ginsenosides Rb1, Rb2, Rc, Rd, Re, Rf and Rg1 from ginseng root by high performance liquid chromatography. Arch Pharm Res 1982;5:7-12. https://doi.org/10.1007/BF02856357
  18. Chung E, Lee KY, Lee YJ, Lee YH, Lee SK. Ginsenoside Rg1 down-regulates glucocorticoid receptor and displays synergistic effects with cAMP. Steroids 1998;63:421-4. https://doi.org/10.1016/S0039-128X(98)00043-9
  19. Wu J, Pan Z, Wang Z, Zhu W, Shen Y, Cui R, Lin J, Yu H, Wang Q, Qian J, et al. Ginsenoside Rg1 protection against beta-amyloid peptide-induced neuronal apoptosis via estrogen receptor alpha and glucocorticoid receptordependent anti-protein nitration pathway. Neuropharmacology 2012;63:349-61. https://doi.org/10.1016/j.neuropharm.2012.04.005
  20. Shen K, Leung SW, Ji L, Huang Y, Hou M, Xu A, Wang Z, Vanhoutte PM. Notoginsenoside Ft1 activates both glucocorticoid and estrogen receptors to induce endothelium-dependent, nitric oxide-mediated relaxations in rat mesenteric arteries. Biochem Pharmacol 2014;88:66-74.
  21. Bae JS, Park HS, Park JW, Li SH, Chun YS. Red ginseng and 20(S)-Rg3 control testosterone-induced prostate hyperplasia by deregulating androgen receptor signaling. J Nat Med 2012;66:476-85. https://doi.org/10.1007/s11418-011-0609-8
  22. Wang W, Wang H, Rayburn ER, Zhao Y, Hill DL, Zhang R. 20(S)-25-methoxyldammarane-3beta, 12beta, 20-triol, a novel natural product for prostate cancer therapy: activity in vitro and in vivo and mechanisms of action. Br J Cancer 2008;98:792-802. https://doi.org/10.1038/sj.bjc.6604227
  23. Park GH, Park KY, Cho HI, Lee SM, Han JS, Won CH, Chang SE, Lee MW, Choi JH, Moon KC, et al. Red ginseng extract promotes the hair growth in cultured human hair follicles. J Med Food 2015;18:354-62. https://doi.org/10.1089/jmf.2013.3031
  24. Kim EH, Kim IH, Lee MJ, Thach Nguyen C, Ha JA, Lee SC, Choi S, Choi KT, Pyo S, Rhee DK. Anti-oxidative stress effect of red ginseng in the brain is mediated by peptidyl arginine deiminase type IV (PADI4) repression via estrogen receptor (ER) beta up-regulation. J Ethnopharmacol 2013;148:474-85. https://doi.org/10.1016/j.jep.2013.04.041
  25. Ding J, Xu Y, Ma X, An J, Yang X, Liu Z, Lin N. Estrogenic effect of the extract of Renshen (Radix Ginseng) on reproductive tissues in immature mice. J Tradit Chin Med 2015;35:460-7. https://doi.org/10.1016/S0254-6272(15)30125-4
  26. Xu Y, Ding J, Ma XP, Ma YH, Liu ZQ, Lin N. Treatment with Panax ginseng antagonizes the estrogen decline in ovariectomized mice. Int J Mol Sci 2014;15:7827-40. https://doi.org/10.3390/ijms15057827
  27. Shim MK, Lee YJ. Estrogen receptor is activated by Korean Red Ginseng in vitro but not in vivo. J Ginseng Res 2012;36:169-75. https://doi.org/10.5142/jgr.2012.36.2.169
  28. Chen LM, Lin ZY, Zhu YG, Lin N, Zhang J, Pan XD, Chen XC. Ginsenoside Rg1 attenuates beta-amyloid generation via suppressing PPARgamma-regulated BACE1 activity in N2a-APP695 cells. Eur J Pharmacol 2012;675:15-21. https://doi.org/10.1016/j.ejphar.2011.11.039
  29. Pan XY, Guo H, Han J, Hao F, An Y, Xu Y, Xiaokaiti Y, Pan Y, Li XJ. Ginsenoside Rg3 attenuates cell migration via inhibition of aquaporin 1 expression in PC-3M prostate cancer cells. Eur J Pharmacol 2012;683:27-34. https://doi.org/10.1016/j.ejphar.2012.02.040
  30. Yoon M, Lee H, Jeong S, Kim JJ, Nicol CJ, Nam KW, Kim M, Cho BG, Oh GT. Peroxisome proliferator-activated receptor alpha is involved in the regulation of lipid metabolism by ginseng. Br J Pharmacol 2003;138:1295-302. https://doi.org/10.1038/sj.bjp.0705169
  31. Li M, Ling CQ, Huang XQ, Shen ZL. Effects of ginsenosides extracted from ginseng stem and leaves on glucocorticoid receptor in different viscera in heat-damaged rats. Zhong Xi Yi Jie He Xue Bao 2006;4:156-9. https://doi.org/10.3736/jcim20060210
  32. Leung KW, Cheng YK, Mak NK, Chan KK, Fan TP, Wong RN. Signaling pathway of ginsenoside-Rg1 leading to nitric oxide production in endothelial cells. FEBS Lett 2006;580:3211-6. https://doi.org/10.1016/j.febslet.2006.04.080
  33. Nah SY. Ginseng ginsenoside pharmacology in the nervous system: involvement in the regulation of ion channels and receptors. Front Physiol 2014;5:98.
  34. Cui J, Shen Y, Li R. Estrogen synthesis and signaling pathways during aging: from periphery to brain. Trends Mol Med 2013;19:197-209. https://doi.org/10.1016/j.molmed.2012.12.007
  35. Mauvais-Jarvis F, Clegg DJ, Hevener AL. The role of estrogens in control of energy balance and glucose homeostasis. Endocr Rev 2013;34:309-38. https://doi.org/10.1210/er.2012-1055
  36. Paterni I, Granchi C, Katzenellenbogen JA, Minutolo F. Estrogen receptors alpha (ERalpha) and beta (ERbeta): subtype-selective ligands and clinical potential. Steroids 2014;90:13-29. https://doi.org/10.1016/j.steroids.2014.06.012
  37. Younes M, Honma N. Estrogen receptor beta. Arch Pathol Lab Med 2011;135:63-6.
  38. Rietjens IM, Sotoca AM, Vervoort J, Louisse J. Mechanisms underlying the dualistic mode of action of major soy isoflavones in relation to cell proliferation and cancer risks. Mol Nutr Food Res 2013;57:100-13. https://doi.org/10.1002/mnfr.201200439
  39. Sirotkin AV, Harrath AH. Phytoestrogens and their effects. Eur J Pharmacol 2014;741:230-6. https://doi.org/10.1016/j.ejphar.2014.07.057
  40. Anderson JJ, Garner SC. Phytoestrogens and bone. Baillieres Clin Endocrinol Metab 1998;12:543-57. https://doi.org/10.1016/S0950-351X(98)80003-7
  41. Patisaul HB, Jefferson W. The pros and cons of phytoestrogens. Front Neuroendocrinol 2010;31:400-19. https://doi.org/10.1016/j.yfrne.2010.03.003
  42. Glazier MG, Bowman MA. A review of the evidence for the use of phytoestrogens as a replacement for traditional estrogen replacement therapy. Arch Inter Med 2001;161:1161-72. https://doi.org/10.1001/archinte.161.9.1161
  43. Horn-Ross PL, Barnes S, Lee M, Coward L, Mandel JE, Koo J, John EM, Smith M. Assessing phytoestrogen exposure in epidemiologic studies: development of a database (United States). Cancer Causes Control 2000;11:289-98. https://doi.org/10.1023/A:1008995606699
  44. Chen MN, Lin CC, Liu CF. Efficacy of phytoestrogens for menopausal symptoms: a meta-analysis and systematic review. Climacteric 2015;18:260-9. https://doi.org/10.3109/13697137.2014.966241
  45. Dahlman-Wright K, Cavailles V, Fuqua SA, Jordan VC, Katzenellenbogen JA, Korach KS, Maggi A, Muramatsu M, Parker MG, Gustafsson JA. International Union of Pharmacology. LXIV. Estrogen receptors. Pharmacol Rev 2006;58:773-81. https://doi.org/10.1124/pr.58.4.8
  46. Heldring N, Pike A, Andersson S, Matthews J, Cheng G, Hartman J, Tujague M, Strom A, Treuter E, Warner M, et al. Estrogen receptors: how do they signal and what are their targets. Physiol Rev 2007;87:905-31. https://doi.org/10.1152/physrev.00026.2006
  47. McKeage K, Curran MP, Plosker GL. Fulvestrant: a review of its use in hormone receptor-positive metastatic breast cancer in postmenopausal women with disease progression following antiestrogen therapy. Drugs 2004;64:633-48. https://doi.org/10.2165/00003495-200464060-00009
  48. Klinge CM. Estrogen receptor interaction with co-activators and co-repressors. Steroids 2000;65:227-51. https://doi.org/10.1016/S0039-128X(99)00107-5
  49. Prossnitz ER, Barton M. Estrogen biology: new insights into GPER function and clinical opportunities. Mol Cell Endocrinol 2014;389:71-83. https://doi.org/10.1016/j.mce.2014.02.002
  50. Filardo EJ, Quinn JA, Frackelton Jr AR, Bland KI. Estrogen action via the G protein-coupled receptor, GPR30: stimulation of adenylyl cyclase and cAMPmediated attenuation of the epidermal growth factor receptor-to-MAPK signaling axis. Mol Endocrinol 2002;16:70-84. https://doi.org/10.1210/mend.16.1.0758
  51. Filardo EJ, Quinn JA, Bland KI, Frackelton Jr AR. Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor homolog, GPR30, and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF. Mol Endocrinol 2000;14:1649-60. https://doi.org/10.1210/mend.14.10.0532
  52. Levin ER, Pietras RJ. Estrogen receptors outside the nucleus in breast cancer. Breast Cancer Res Treat 2008;108:351-61. https://doi.org/10.1007/s10549-007-9618-4
  53. Levin ER. Elusive extranuclear estrogen receptors in breast cancer. Clin Cancer Res 2012;18:6-8. https://doi.org/10.1158/1078-0432.CCR-11-2547
  54. Chambliss KL, Wu Q, Oltmann S, Konaniah ES, Umetani M, Korach KS, Thomas GD, Mineo C, Yuhanna IS, Kim SH, et al. Non-nuclear estrogen receptor alpha signaling promotes cardiovascular protection but not uterine or breast cancer growth in mice. J Clin Invest 2010;120:2319-30. https://doi.org/10.1172/JCI38291
  55. Setchell KD. Phytoestrogens: the biochemistry, physiology, and implications for human health of soy isoflavones. Am J Clin Nutr 1998;68:1333S-46S. https://doi.org/10.1093/ajcn/68.6.1333S
  56. Barone M, Tanzi S, Lofano K, Scavo MP, Guido R, Demarinis L, Principi MB, Bucci A, Di Leo A. Estrogens, phytoestrogens and colorectal neoproliferative lesions. Genes Nutr 2008;3:7-13. https://doi.org/10.1007/s12263-008-0081-6
  57. Miyazaki K. Novel approach for evaluation of estrogenic and anti-estrogenic activities of genistein and daidzein using B16 melanoma cells and dendricity assay. Pigment Cell Res 2004;17:407-12. https://doi.org/10.1111/j.1600-0749.2004.00167.x
  58. Sun Z, Biela LM, Hamilton KL, Reardon KF. Concentration-dependent effects of the soy phytoestrogen genistein on the proteome of cultured cardiomyocytes. J Proteomics 2012;75:3592-604. https://doi.org/10.1016/j.jprot.2012.04.001
  59. Weihua Z, Saji S, Makinen S, Cheng G, Jensen EV, Warner M, Gustafsson JA. Estrogen receptor (ER) beta, a modulator of ERalpha in the uterus. Proc Natl Acad Sci U S A 2000;97:5936-41. https://doi.org/10.1073/pnas.97.11.5936
  60. Lindberg MK, Moverare S, Skrtic S, Gao H, Dahlman-Wright K, Gustafsson JA, Ohlsson C. Estrogen receptor (ER)-beta reduces ERalpha-regulated gene transcription, supporting a “ying yang” relationship between ERalpha and ERbeta in mice. Mol Endocrinol 2003;17:203-8. https://doi.org/10.1210/me.2002-0206
  61. Nguyen CT, Luong TT, Kim GL, Pyo S, Rhee DK. Korean Red Ginseng inhibits apoptosis in neuroblastoma cells via estrogen receptor beta-mediated phosphatidylinositol-3 kinase/Akt signaling. J Ginseng Res 2015;39:69-75. https://doi.org/10.1016/j.jgr.2014.06.005
  62. Kim EH, Kim IH, Ha JA, Choi KT, Pyo S, Rhee DK. Antistress effect of red ginseng in brain cells is mediated by TACE repression via PADI4. J Ginseng Res 2013;37:315-23. https://doi.org/10.5142/jgr.2013.37.315
  63. Cho J, Park W, Lee S, Ahn W, Lee Y. Ginsenoside-Rb1 from Panax ginseng C.A. Meyer activates estrogen receptor-alpha and -beta, independent of ligand binding. J Clin Endocrinol Metab 2004;89:3510-5. https://doi.org/10.1210/jc.2003-031823
  64. Leung KW, Cheung LW, Pon YL, Wong RN, Mak NK, Fan TP, Au SC, Tombran-Tink J, Wong AS. Ginsenoside Rb1 inhibits tube-like structure formation of endothelial cells by regulating pigment epithelium-derived factor through the oestrogen beta receptor. Br J Pharmacol 2007;152:207-15. https://doi.org/10.1038/sj.bjp.0707359
  65. Hewitt SC, Korach KS. Oestrogen receptor knockout mice: roles for oestrogen receptors alpha and beta in reproductive tissues. Reproduction 2003;125:143-9. https://doi.org/10.1530/rep.0.1250143
  66. Nogawa S, Forster C, Zhang F, Nagayama M, Ross ME, Iadecola C. Interaction between inducible nitric oxide synthase and cyclooxygenase-2 after cerebral ischemia. Proc Natl Acad Sci U S A 1998;95:10966-71. https://doi.org/10.1073/pnas.95.18.10966
  67. Handa RJ, Ogawa S, Wang JM, Herbison AE. Roles for oestrogen receptor beta in adult brain function. J Neuroendocrinol 2012;24:160-73. https://doi.org/10.1111/j.1365-2826.2011.02206.x
  68. Jensen EV, Jacobson HI, Walf AA, Frye CA. Estrogen action: a historic perspective on the implications of considering alternative approaches. Physiol Behav 2010;99:151-62. https://doi.org/10.1016/j.physbeh.2009.08.013
  69. Kim IH, Kim SK, Kim EH, Kim SW, Sohn SH, Lee SC, Choi S, Pyo S, Rhee DK. Korean Red Ginseng up-regulates C21-steroid hormone metabolism via $Cyp11{\alpha}1$ gene in senescent rat testes. J Ginseng Res 2011;35:272-82. https://doi.org/10.5142/jgr.2011.35.3.272
  70. Lavoie HA, King SR. Transcriptional regulation of steroidogenic genes: STARD1, CYP11A1 and HSD3B. Exp Biol Med (Maywood) 2009;234:880-907. https://doi.org/10.3181/0903-MR-97
  71. Papapetropoulos A. A ginseng-derived oestrogen receptor beta (ERbeta) agonist, Rb1 ginsenoside, attenuates capillary morphogenesis. Br J Pharmacol 2007;152:172-4. https://doi.org/10.1038/sj.bjp.0707360
  72. Hao K, Gong P, Sun SQ, Hao HP, Wang GJ, Dai Y, Chen YC, Liang Y, Xie L, Li FY, et al. Mechanism-based pharmacokinetic-pharmacodynamic modeling of the estrogen-like effect of ginsenoside Rb1 on neural 5-HT in ovariectomized mice. Eur J Pharm Sci 2011;44:117-26. https://doi.org/10.1016/j.ejps.2011.06.014
  73. Hashimoto R, Yu J, Koizumi H, Ouchi Y, Okabe T. Ginsenoside Rb1 prevents MPP(+)-induced apoptosis in PC12 cells by stimulating estrogen receptors with consequent activation of ERK1/2, Akt and inhibition of SAPK/JNK, p38 MAPK. Evid Based Complement Alternat Med 2012;2012:693717.
  74. Cheng W, Wu D, Zuo Q, Wang Z, Fan W. Ginsenoside Rb1 prevents interleukin-1 beta induced inflammation and apoptosis in human articular chondrocytes. Int Orthop 2013;37:2065-70. https://doi.org/10.1007/s00264-013-1990-6
  75. Chen WF, Lau WS, Cheung PY, Guo DA, Wong MS. Activation of insulin-like growth factor I receptor-mediated pathway by ginsenoside Rg1. Br J Pharmacol 2006;147:542-51. https://doi.org/10.1038/sj.bjp.0706640
  76. Gao QG, Chan HY, Man CW, Wong MS. Differential ERalpha-mediated rapid estrogenic actions of ginsenoside Rg1 and estren in human breast cancer MCF-7 cells. J Steroid Biochem Mol Biol 2014;141:104-12. https://doi.org/10.1016/j.jsbmb.2014.01.014
  77. Zhang X, Wang J, Xing Y, Gong L, Li H, Wu Z, Li Y, Wang J, Wang Y, Dong L, et al. Effects of ginsenoside Rg1 or 17beta-estradiol on a cognitively impaired, ovariectomized rat model of Alzheimer's disease. Neuroscience 2012;220:191-200. https://doi.org/10.1016/j.neuroscience.2012.06.027
  78. Shi C, Zheng DD, Fang L, Wu F, Kwong WH, Xu J. Ginsenoside Rg1 promotes nonamyloidgenic cleavage of APP via estrogen receptor signaling to MAPK/ERK and PI3K/Akt. Biochim Biophys Acta 2012;1820:453-60. https://doi.org/10.1016/j.bbagen.2011.12.005
  79. Gao QG, Chen WF, Xie JX, Wong MS. Ginsenoside Rg1 protects against 6-OHDA-induced neurotoxicity in neuroblastoma SK-N-SH cells via IGF-I receptor and estrogen receptor pathways. J Neurochem 2009;109:1338-47. https://doi.org/10.1111/j.1471-4159.2009.06051.x
  80. Lu XZ, Wang JH, Wu X, Zhou L, Wang L, Zhang XW, Cao KJ, Huang J. Ginsenoside Rg1 promotes bone marrow stromal cells proliferation via the activation of the estrogen receptor-mediated signaling pathway. Acta Pharmacol Sin 2008;29:1209-14. https://doi.org/10.1111/j.1745-7254.2008.00874.x
  81. Chan RY, Chen WF, Dong A, Guo D, Wong MS. Estrogen-like activity of ginsenoside Rg1 derived from Panax notoginseng. J Clin Endocrinol Metab 2002;87:3691-5. https://doi.org/10.1210/jcem.87.8.8717
  82. Hien TT, Kim ND, Pokharel YR, Oh SJ, Lee MY, Kang KW. Ginsenoside Rg3 increases nitric oxide production via increases in phosphorylation and expression of endothelial nitric oxide synthase: essential roles of estrogen receptor-dependent PI3-kinase and AMP-activated protein kinase. Toxicol Appl Pharmacol 2010;246:171-83. https://doi.org/10.1016/j.taap.2010.05.008
  83. Nakaya Y, Mawatari K, Takahashi A, Harada N, Hata A, Yasui S. The phytoestrogen ginsenoside Re activates potassium channels of vascular smooth muscle cells through PI3K/Akt and nitric oxide pathways. J Med Invest 2007;54:381-4. https://doi.org/10.2152/jmi.54.381
  84. Furukawa T, Bai CX, Kaihara A, Ozaki E, Kawano T, Nakaya Y, Awais M, Sato M, Umezawa Y, Kurokawa J. Ginsenoside Re, a main phytosterol of Panax ginseng, activates cardiac potassium channels via a nongenomic pathway of sex hormones. Mol Pharmacol 2006;70:1916-24. https://doi.org/10.1124/mol.106.028134
  85. Sun B, Xiao J, Sun XB, Wu Y. Notoginsenoside R1 attenuates cardiac dysfunction in endotoxemic mice: an insight into oestrogen receptor activation and PI3K/Akt signalling. Br J Pharmacol 2013;168:1758-70. https://doi.org/10.1111/bph.12063
  86. Wang T, Wan D, Shao L, Dai J, Jiang C. Notoginsenoside R1 stimulates osteogenic function in primary osteoblasts via estrogen receptor signaling. Biochem Biophys Res Commun 2015;466:232-9. https://doi.org/10.1016/j.bbrc.2015.09.014
  87. Lee Y, Jin Y, Lim W, Ji S, Choi S, Jang S, Lee S. A ginsenoside-Rh1, a component of ginseng saponin, activates estrogen receptor in human breast carcinoma MCF-7 cells. J Steroid Biochem Mol Biol 2003;84:463-8. https://doi.org/10.1016/S0960-0760(03)00067-0
  88. Leung KW, Leung FP, Mak NK, Tombran-Tink J, Huang Y, Wong RN. Protopanaxadiol and protopanaxatriol bind to glucocorticoid and oestrogen receptors in endothelial cells. Br J Pharmacol 2009;156:626-37. https://doi.org/10.1111/j.1476-5381.2008.00066.x
  89. Kim MS, Lim HJ, Yang HJ, Lee MS, Shin BC, Ernst E. Ginseng for managing menopause symptoms: a systematic review of randomized clinical trials. J Ginseng Res 2013;37:30-6. https://doi.org/10.5142/jgr.2013.37.30
  90. Oh KJ, Chae MJ, Lee HS, Hong HD, Park K. Effects of Korean Red Ginseng on sexual arousal in menopausal women: placebo-controlled, double-blind crossover clinical study. J Sex Med 2010;7:1469-77. https://doi.org/10.1111/j.1743-6109.2009.01700.x
  91. Kim SY, Seo SK, Choi YM, Jeon YE, Lim KJ, Cho S, Choi YS, Lee BS. Effects of red ginseng supplementation on menopausal symptoms and cardiovascular risk factors in postmenopausal women: a double-blind randomized controlled trial. Menopause 2012;19:461-6. https://doi.org/10.1097/gme.0b013e3182325e4b
  92. Kim H, Yoon Y, Lee J, Lee C, Jang J, Lee K, Cho J. A clinical study on the effect of red ginseng for postmenopausal hot flushes. J Orient Obstet Gynecol 2009;22:132-9.
  93. Wiklund IK, Mattsson LA, Lindgren R, Limoni C. Effects of a standardized ginseng extract on quality of life and physiological parameters in symptomatic postmenopausal women: a double-blind, placebo-controlled trial. Swedish Alternative Medicine Group. Int J Clin Pharmacol Res 1999;19:89-99.
  94. Jang DJ, Lee MS, Shin BC, Lee YC, Ernst E. Red ginseng for treating erectile dysfunction: a systematic review. Br J Clin Pharmacol 2008;66:444-50. https://doi.org/10.1111/j.1365-2125.2008.03236.x
  95. Kim SW, Paick JS. Clinical efficacy of Korean Red Ginseng on vasculogenic impotent patients. Korean J Androl 1999;17:23-8.
  96. Ham WS, Kim WT, Lee JS, Ju HJ, Kang SJ, Oh JH, Her Y, Chung JY, Park K, Choi YD. Efficacy and safety of red ginseng extract powder in patients with erectile dysfunction: multicenter, randomized, double-blind, placebocontrolled study. Korean J Urol 2009;50:159-64. https://doi.org/10.4111/kju.2009.50.2.159
  97. Chung HS, Hwang I, Oh KJ, Lee MN, Park K. The effect of Korean Red Ginseng on sexual function in premenopausal women: placebo-controlled, doubleblind, crossover clinical trial. Evid Based Complement Alternat Med 2015;2015:913158.
  98. Kim DI, Choi MS, Alm HY. Efficacy and safety of red ginseng on women's health related quality of life and sexual function. J Ginseng Res 2009;33:115-26. https://doi.org/10.5142/JGR.2009.33.2.115
  99. Heinlein CA, Chang C. The roles of androgen receptors and androgen-binding proteins in nongenomic androgen actions. Mol Endocrinol 2002;16:2181-7. https://doi.org/10.1210/me.2002-0070
  100. Lee DK, Chang C. Molecular communication between androgen receptor and general transcription machinery. J Steroid Biochem Mol Biol 2003;84:41-9. https://doi.org/10.1016/S0960-0760(03)00005-0
  101. Hiort O, Holterhus PM. Androgen insensitivity and male infertility. Int J Androl 2003;26:16-20. https://doi.org/10.1046/j.1365-2605.2003.00369.x
  102. McPhaul MJ. Androgen receptor mutations and androgen insensitivity. Mol Cell Endocrinol 2002;198:61-7. https://doi.org/10.1016/S0303-7207(02)00369-6
  103. Melo CO, Danin AR, Silva DM, Tacon JA, Moura KK, Costa EO, da Cruz AD. Association between male infertility and androgen receptor mutations in Brazilian patients. Genet Mol Res 2010;9:128-33. https://doi.org/10.4238/vol9-1gmr661
  104. Kopalli SR, Won Y-J, Hwang S-Y, Cha K-M, Kim S-Y, Han C-K, Lee S-H, Hong JY, Kim S-K. Korean Red Ginseng protects against doxorubicin-induced testicular damage: an experimental study in rats. J Funct Foods 2016;20:96-107. https://doi.org/10.1016/j.jff.2015.10.020
  105. Kopalli SR, Cha K-M, Jeong M-S, Lee S-H, Sung J-H, Seo S-K, Kim S-K. Pectinase-treated Panax ginseng ameliorates hydrogen peroxide-induced oxidative stress in GC-2 sperm cells and modulates testicular gene expression in aged rats. J Ginseng Res 2016;40:185-95. https://doi.org/10.1016/j.jgr.2015.08.005
  106. Wang H, Feng L, Chu Z, Yu N, Yang Q, Zhang Z, Wang L, Wu Y. Study on the changes of rat testis androgen receptor mRNA expression and plasma testosterone after cold stress. Lishizhen Med Mater Med Res 2008;4:929-30.

Cited by

  1. Ginseng on Nuclear Hormone Receptors vol.45, pp.6, 2017, https://doi.org/10.1142/s0192415x17500628
  2. Urinary metabolomic study of the antagonistic effect of P. ginseng in rats with estrogen decline using ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry vol.9, pp.3, 2017, https://doi.org/10.1039/c7fo01680h
  3. The ginsenoside PPD exerts anti-endometriosis effects by suppressing estrogen receptor-mediated inhibition of endometrial stromal cell autophagy and NK cell cytotoxicity vol.9, pp.5, 2018, https://doi.org/10.1038/s41419-018-0581-2
  4. Ginseng for improving semen quality parameters : A protocol of systematic review vol.97, pp.4, 2017, https://doi.org/10.1097/md.0000000000009732
  5. Revealing the Inhibitory Effect of Ginseng on Mitochondrial Respiration through Synaptosomal Proteomics vol.18, pp.11, 2017, https://doi.org/10.1002/pmic.201700354
  6. Why ginseng has protective functions on the heart vol.25, pp.11, 2017, https://doi.org/10.1177/2047487318768943
  7. Plant-Derived Supplements for Sexual Health and Problems, Part 2: Further Evidence for Specific Herbal Effects vol.11, pp.3, 2017, https://doi.org/10.1007/s11930-019-00204-z
  8. Korean red ginseng promotes hippocampal neurogenesis in mice vol.15, pp.5, 2017, https://doi.org/10.4103/1673-5374.268905
  9. Effects of Ginseng Ingestion on Salivary Testosterone and DHEA Levels in Healthy Females: An Exploratory Study vol.12, pp.6, 2017, https://doi.org/10.3390/nu12061582
  10. Ginseng-Induced Changes to Blood Vessel Dilation and the Metabolome of Rats vol.12, pp.8, 2020, https://doi.org/10.3390/nu12082238
  11. Korean red ginseng induces extrinsic and intrinsic apoptotic pathways in MCF‐7 breast cancer cells and MCF‐10A non‐malignant breast cells vol.47, pp.8, 2017, https://doi.org/10.1111/jog.14826
  12. Efficacy of Panax ginseng supplementation on androgen deficiency rats via metabolomics and gut microbiota vol.87, pp.None, 2021, https://doi.org/10.1016/j.jff.2021.104810