DOI QR코드

DOI QR Code

A cumulative damage model for extremely low cycle fatigue cracking in steel structure

  • Huanga, Xuewei (School of Mechanics and Engineering Science, Zhengzhou University) ;
  • Zhao, Jun (School of Mechanics and Engineering Science, Zhengzhou University)
  • Received : 2016.06.25
  • Accepted : 2017.01.17
  • Published : 2017.04.25

Abstract

The purpose of this work is to predict ductile fracture of structural steel under extremely low cyclic loading experienced in earthquake. A cumulative damage model is proposed on the basis of an existing damage model originally aiming to predict fracture under monotonic loading. The cumulative damage model assumes that damage does not grow when stress triaxiality is below a threshold and fracture occurs when accumulated damage reach unit. The model was implemented in ABAQUS software. The cumulative damage model parameters for steel base metal, weld metal and heat affected zone were calibrated, respectively, through testing and finite element analyses of notched coupon specimens. The damage evolution law in the notched coupon specimens under different loads was compared. Finally, in order to examine the engineering applicability of the proposed model, the fracture performance of beam-column welded joints reported by previous researches was analyzed based on the cumulative damage model. The analysis results show that the cumulative damage model is able to successfully predict the cracking location, fracture process, the crack initiation life, and the total fatigue life of the joints.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, University of Henan Province, Education Department of Henan Province

References

  1. Amiri, H.R., Aghakouchak, A.A., Shahbeyk, S. and Engelhardt, M.D. (2013), "Finite element simulation of ultra low cycle fatigue cracking in steel structures", J. Constr. Steel Res., 89, 175-184. https://doi.org/10.1016/j.jcsr.2013.07.007
  2. Bao, Y. and Wierzbicki, T. (2004), "On fracture locus in the equivalent strain and stress triaxiality space", Int. J. Mech. Sci., 46(81), 81-98. https://doi.org/10.1016/j.ijmecsci.2004.02.006
  3. Bao, Y. and Wierzbicki, T. (2005), "On the cut-off value of negative triaxiality for fracture", Eng. Fract. Mech., 72(7), 1049-1069. https://doi.org/10.1016/j.engfracmech.2004.07.011
  4. Besson, J. and Guillemer-Neel, C. (2003), "An extension of the Green and Gurson models to kinematic hardening", Mech. Mater., 35(1-2), 1-18. https://doi.org/10.1016/S0167-6636(02)00169-2
  5. Besson, J., Steglich, D. and Brocks, W. (2001), "Modeling of crack growth in round bars and plane strain specimens", Int. J. Solid. Struct., 38(46-47):8259-8284. https://doi.org/10.1016/S0020-7683(01)00167-6
  6. Bleck, W., Dahl, W., Nonn, A., Amlung, L., Feldmann, M., Schafer, D. and Eichler, B. (2009), "Numerical and experimental analyses of damage behaviour of steel moment connection", Eng. Fract. Mech., 76(10), 1531-1547. https://doi.org/10.1016/j.engfracmech.2009.03.004
  7. Bonora, N. (1997), "A nonlinear CDM model for ductile failure", Eng. Fract. Mech., 58(1), 11-28. https://doi.org/10.1016/S0013-7944(97)00074-X
  8. Chao, S., Khandelwal, K. and El-Tawil, S. (2006), "Ductile web fracture initiation in steel shear links", J. Struct. Eng., 132(8), 1192-1200. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:8(1192)
  9. Code for seismic design of buildings (2010), GB 50011-2010, China Architectura & Building Press, Beijing.
  10. Dufailly, J. and Lemaitre, J. (1995), "Modeling very low cycle fatigue", Int. J. Damage Mech., 4(2), 153-170. https://doi.org/10.1177/105678959500400204
  11. Hancock, J.W. and Mackenzie, A.C. (1976), "On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states", J. Mech. Phys. Solid., 24(s2-3), 147-160. https://doi.org/10.1016/0022-5096(76)90024-7
  12. Huang, X., Tong, L., Zhou, F. and Chen, Y. (2013), "Prediction of fracture behavior of beam-to-column welded joints using micromechanics damage model", J. Constr. Steel Res., 85, 60-72. https://doi.org/10.1016/j.jcsr.2013.02.014
  13. Kamaya, M. (2010), "Fatigue properties of 316 stainless steel and its failure due to internal cracks in low-cycle and extremely low-cycle fatigue regimes", Int. J. Fatigue, 32(7), 1081-1089. https://doi.org/10.1016/j.ijfatigue.2009.12.003
  14. Kanvinde, A.M. and Deierlein, G.G. (2006a), "Void growth model and the stress modified critical strain model to predict ductile fracture in structural steels", J. Struct. Eng., 132(12), 1907-1918. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:12(1907)
  15. Kanvinde, A.M. and Deierlein, G.G. (2006b), "Prediction of ductile fracture in steel connections using SMCS criterion", J. Struct. Eng., 132(2), 171-181. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:2(171)
  16. Kanvinde, A.M. and Deierlein, G.G. (2007), "Cyclic void growth model to assess ductile fracture initiation in structural steels due to ultra low cycle fatigue", J. Struct. Mech., 133(6), 701-712.
  17. Kanvinde, A.M. and Deierlein, G.G. (2008), "Validation of cyclic void growth model for fracture initiation in blunt notch and dogbone steel specimens", J. Struct. Eng., 134(9), 1528-1537. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:9(1528)
  18. Kiran, R. and Khandelwal, K. (2014), "Gurson model parameters for ductile fracture simulation in ASTM A992 steels", Fatigue Fract. Eng. Mater. Struct., 37(2), 171-183. https://doi.org/10.1111/ffe.12097
  19. Kiran, R. and Khandelwal, K. (2015), "A micromechanical cyclic void growth model for ultra-low cycle fatigue", Int. J. Fatigue, 70, 24-37. https://doi.org/10.1016/j.ijfatigue.2014.08.010
  20. Kuroda. M. (2002), "Extremely low cycle fatigue life prediction based on a new cumulative fatigue damage model", Int. J. Fatigue, 24(6), 699-703. https://doi.org/10.1016/S0142-1123(01)00170-0
  21. Kuwamura, H. (1998), "Fracture of steel during an earthquakestate-of-the-art in Japan", Eng. Struct., 20(4-6), 310-322. https://doi.org/10.1016/S0141-0296(97)00030-8
  22. Leblond, J.B., Perrin, G. and Devaux, J. (1995), "An improved Gurson-type model for hardenable ductile metals", Eur. J. Mech. A, 14(4), 499-527.
  23. Li, L., Wang, W., Chen, Y. and Lu, Y. (2015), "Effect of beam web bolt arrangement on catenary behaviour of moment connections", J. Constr. Steel Res., 104, 22-36. https://doi.org/10.1016/j.jcsr.2014.09.016
  24. Liao, F.F., Wang, W. and Chen, Y.Y. (2012), "Parameter calibrations and application of micromechanical fracture models of structural steels", Struct. Eng. Mech., 42(2), 153-174. https://doi.org/10.12989/sem.2012.42.2.153
  25. Mackenzie, A.C., Hancock, J.W. and Brown, D.K. (1977), "On the influence of state of stress on ductile failure initiation in high strength steels", Eng. Fract. Mech., 9(1), 167-188. https://doi.org/10.1016/0013-7944(77)90062-5
  26. Mahin, S.A. (1998), "Lessons from damage to steel buildings during the Northridge earthquake", Eng. Struct., 20(4), 261-270. https://doi.org/10.1016/S0141-0296(97)00032-1
  27. Myers, A.T. (2009b), "Testing and probabilistic simulation of ductile fracture initiation in structural steel components and weldments", Stanford University, California.
  28. Myers, A.T., Kanvinde, A.M., Deierlein, G.G. and Fell, B.V. (2009a), "Effect of weld details on the ductility of steel column baseplate connections", J. Constr. Steel Res., 65, 1366-1373. https://doi.org/10.1016/j.jcsr.2008.08.004
  29. Nip, K.H., Gardner, L., Davies, C.M. and Elghazouli, A.Y. (2010), "Extremely low cycle fatigue tests on structural carbon steel and stainless steel", J. Constr. Steel Res., 66(1), 96-110. https://doi.org/10.1016/j.jcsr.2009.08.004
  30. Pirondi, A. and Bonora, N. (2003), "Modeling ductile damage under fully reversed cycling", Comput. Mater. Sci., 26, 129-141. https://doi.org/10.1016/S0927-0256(02)00411-1
  31. Pirondi, A., Bonora, N., Steglich, D., Brocks, W. and Hellmann, D. (2006), "Simulation of failure under cyclic plastic loading by damage models", Int. J. Plast., 22(11), 2146-2170. https://doi.org/10.1016/j.ijplas.2006.03.007
  32. Rice, J.R. and Tracey, D.M. (1969), "On the ductile enlargement of voids in triaxial stress fields", J. Mech. Phys. Solid., 17(3), 201-217. https://doi.org/10.1016/0022-5096(69)90033-7
  33. Ristinmaa, M. (1997), "Void growth in cyclic loaded porous plastic solid", Mech. Mater., 26(4), 227-245. https://doi.org/10.1016/S0167-6636(97)00031-8
  34. Rousselier, G. (1987), "Ductile fracture models and their potential in local approach of fracture", Nucl. Eng. Des., 105(1), 97-111. https://doi.org/10.1016/0029-5493(87)90234-2
  35. Steglich, D., Pirondi, A., Bonora, N. and Brocks, W. (2005), "Micromechanical modelling of cyclic plasticity incorporating damage", Int. J. Solid. Struct., 42(2), 337-351. https://doi.org/10.1016/j.ijsolstr.2004.06.041
  36. Tong, L., Huang, X., Zhou, F. and Chen, Y. (2016), "Experimental and numerical investigations on extremely-low-cycle fatigue fracture behavior of steel welded joints", J. Constr. Steel Res., 119, 98-112. https://doi.org/10.1016/j.jcsr.2015.12.015
  37. Xue, L. (2008), "A unified expression for low cycle fatigue and extremely low cycle fatigue and its implication for monotonic loading", Int. J. Fatigue, 30(10-11), 1691-1698. https://doi.org/10.1016/j.ijfatigue.2008.03.004
  38. Zhou, H., Wang, Y., Shi, Y., Xiong, J. and Yang, L. (2013), "Extremely low cycle fatigue prediction of steel beam-to column connection by using a micro-mechanics based fracture model", Int. J. Fatigue, 48(2), 90-100. https://doi.org/10.1016/j.ijfatigue.2012.10.006
  39. Zhou, H., Wang, Y., Yang, L. and Shi, Y. (2014), "Seismic lowcycle fatigue evaluation of welded beam-to-column connections in steel moment frames through global-local analysis", Int. J. Fatigue, 64(7), 97-113. https://doi.org/10.1016/j.ijfatigue.2014.03.002

Cited by

  1. Extremely-Low-Cycle Fatigue Damage for Beam-to-Column Welded Joints Using Structural Details vol.13, pp.7, 2017, https://doi.org/10.3390/ma13071768
  2. Performance evaluation of self-centering rocking shear walls: Part 1 - Quantification of structural damages vol.34, pp.None, 2017, https://doi.org/10.1016/j.istruc.2021.09.024