과제정보
연구 과제 주관 기관 : National Science Council
참고문헌
- Alamatian, J. (2013), "New implicit higher order time integration for dynamic analysis", Struct. Eng. Mech., 48(5), 711-736. https://doi.org/10.12989/sem.2013.48.5.711
- Bathe, K.J. and Noh, G. (2012), "Insight into an implicit time integration scheme for structural dynamics", Comput. Struct., 98-99, 1-6. https://doi.org/10.1016/j.compstruc.2012.01.009
- Bathe, K.J. and Wilson, E.L. (1973), "Stability and accuracy analysis of direct integration methods", Earthq. Eng. Struct. Dyn., 1, 283-291.
- Belytschko, T. and Hughes, T.J.R. (1983), Computational Methods for Transient Analysis, Elsevier Science Publishers B.V., North-Holland, Amsterdam.
- Chang, S.Y. (2002), "Explicit pseudodynamic algorithm with unconditional stability", J. Eng. Mech., ASCE, 128(9), 935-947. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:9(935)
- Chang, S.Y. (2006), "Accurate representation of external force in time history analysis", J. Eng. Mech., ASCE, 132(1), 34-45. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:1(34)
- Chang, S.Y. (2007a), "Enhanced unconditionally stable explicit pseudodynamic algorithm", J. Eng. Mech., ASCE, 133(5), 541-554. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:5(541)
- Chang, S.Y. (2007b), "Improved explicit method for structural dynamics", J. Eng. Mech., ASCE, 133(7), 748-760. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:7(748)
- Chang, S.Y. (2009), "An explicit method with improved stability property", Int. J. Numer. Meth. Eng., 77(8), 1100-1120. https://doi.org/10.1002/nme.2452
- Chang, S.Y. (2010), "A new family of explicit method for linear structural dynamics", Comput. Struct., 88(11-12), 755-772. https://doi.org/10.1016/j.compstruc.2010.03.002
- Chang, S.Y. (2014a), "Family of structure-dependent explicit methods for structural dynamics", J. Eng. Mech., ASCE, 140(6), 06014005. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000748
- Chang, S.Y. (2014b), "Numerical dissipation for explicit, unconditionally stable time integration methods", Earthq. Struct., 7(2), 157-176.
- Chang, S.Y. (2014c), "A family of non-iterative integration methods with desired numerical dissipation", Int. J. Numer. Meth. Eng., 100(1), 62-86. https://doi.org/10.1002/nme.4720
- Chang, S.Y. (2015a), "Dissipative, non-iterative integration algorithms with unconditional stability for mildly nonlinear structural dynamics", Nonlin. Dyn., 79(2), 1625-1649. https://doi.org/10.1007/s11071-014-1765-7
- Chang, S.Y. (2015b), "A general technique to improve stability property for a structure-dependent integration method", Int. J. Numer. Meth. Eng., 101(9), 653-669. https://doi.org/10.1002/nme.4806
- Chang, S.Y., Wu, T.H. and Tran, N.C. (2015), "A family of dissipative structure-dependent integration methods", Struct. Eng. Mech., 55(4), 815-837. https://doi.org/10.12989/sem.2015.55.4.815
- Chang, S.Y., Wu, T.H. and Tran, N.C. (2016), "Improved formulation for a structure-dependent integration method", Struct. Eng. Mech., 60(1), 149-162. https://doi.org/10.12989/sem.2016.60.1.149
- Chen, C. and Ricles, J.M. (2008), "Development of direct integration algorithms for structural dynamics using discrete control theory", J. Eng. Mech., ASCE, 134(8), 676-683. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:8(676)
- Chung, J. and Hulbert, G.M. (1993), "A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-method", J. Appl. Mech., 60(6), 371-375. https://doi.org/10.1115/1.2900803
- Civalek, O. (2006), "Harmonic differential quadrature-finite differences coupled approaches for geometrically nonlinear static and dynamic analysis of rectangular plates on elastic foundation", J. Sound Vib., 294(4), 966-980. https://doi.org/10.1016/j.jsv.2005.12.041
- Civalek, O. (2007), "Nonlinear dynamic response of MDOF systems by the method of harmonic differential quadrature (HDQ)", Struct. Eng. Mech., 25(2), 201-217. https://doi.org/10.12989/sem.2007.25.2.201
- Civalek, O. (2013), "Nonlinear dynamic response of laminated plates resting on nonlinear elastic foundations by the discrete singular convolution-differential quadrature coupled approaches", Compos. Part B: Eng., 50, 171-179. https://doi.org/10.1016/j.compositesb.2013.01.027
- Fung, T.C. (2001), "Solving initial value problems by differential quadrature method-Part 2: second-and higher-order equations", Int. J. Numer. Meth. Eng., 50, 1429-1454. https://doi.org/10.1002/1097-0207(20010228)50:6<1429::AID-NME79>3.0.CO;2-A
- Fung, T.C. (2002), "Stability and accuracy of differential quadrature method in solving dynamic problems", Comput. Meth. Appl. Mech. Eng., 191, 1311-1331. https://doi.org/10.1016/S0045-7825(01)00324-3
- Gao, Q., Wu, F., Zhang, H.W., Zhong, W.X., Howson, W.P. and Williams, F.W. (2012), "A fast precise integration method for structural dynamics problems", Struct. Eng. Mech., 43(1), 1-13. https://doi.org/10.12989/sem.2012.43.1.001
- Goudreau, G.L. and Taylor, R.L. (1972), "Evaluation of numerical integration methods in elasto-dynamics", Computer Methods in Applied Mechanics and Engineering, 2, 69-97.
- Gui, Y., Wang, J.T., Jin, F., Chen, C. and Zhou, M.X. (2014), "Development of a family of explicit algorithms for structural dynamics with unconditional stability", Nonlin. Dyn., 77(4), 1157-1170. https://doi.org/10.1007/s11071-014-1368-3
- Hadianfard, M.A. (2012), "Using integrated displacement method to time-history analysis of steel frames with nonlinear flexible connections", Struct. Eng. Mech., 41(5), 675-689. https://doi.org/10.12989/sem.2012.41.5.675
- Hilber, H.M. and Hughes, T.J.R. (1978), "Collocation, dissipation, and 'overshoot' for time integration schemes in structural dynamics", Earthq. Eng. Struct. Dyn., 6, 99-118. https://doi.org/10.1002/eqe.4290060111
- Hilber, H.M., Hughes, T.J.R. and Taylor, R.L. (1977), "Improved numerical dissipation for time integration algorithms in structural dynamics", Earthq. Eng. Struct. Dyn., 5, 283-292. https://doi.org/10.1002/eqe.4290050306
- Kolay, C. and Ricles, J. (2016), "Assessment of explicit and semiexplicit classes of model-based algorithms for direct integration in structural dynamics", Int. J. Numer. Meth. Eng., 107, 49-73. https://doi.org/10.1002/nme.5153
- Kolay, C. and Ricles, J.M. (2014), "Development of a family of unconditionally stable explicit direct integration algorithms with controllable numerical energy dissipation", Earthq. Eng. Struct. Dyn., 43, 1361-1380. https://doi.org/10.1002/eqe.2401
- Krenk, S. (2008), "Extended state-space time integration with high-frequency energy dissipation", Int. J. Numer. Meth. Eng., 73, 1767-1787. https://doi.org/10.1002/nme.2144
- Newmark, N.M. (1959), "A method of computation for structural dynamics", J. Eng. Mech. Div., ASCE, 85, 67-94.
- Penzien, J. (2004), "Dynamic analysis of structure/foundation systems", Struct. Eng. Mech., 17(3), 281-290. https://doi.org/10.12989/sem.2004.17.3_4.281
- Su, C. and Xu, R. (2014), "Random vibration analysis of structures by a time-domain explicit formulation method", Struct. Eng. Mech., 52(2), 239-260. https://doi.org/10.12989/sem.2014.52.2.239
- Wood, W.L., Bossak, M. and Zienkiewicz, O.C. (1981), "An alpha modification of Newmark's method", Int. J. Numer. Meth. Eng., 15, 1562-1566.
피인용 문헌
- Noniterative Integration Algorithms with Controllable Numerical Dissipations for Structural Dynamics pp.1793-6969, 2019, https://doi.org/10.1142/S0219876218501116
- Choices of Structure-Dependent Pseudodynamic Algorithms vol.145, pp.5, 2019, https://doi.org/10.1061/(ASCE)EM.1943-7889.0001599
- A dual family of dissipative structure-dependent integration methods for structural nonlinear dynamics vol.98, pp.1, 2017, https://doi.org/10.1007/s11071-019-05223-y
- A dissipative family of eigen-based integration methods for nonlinear dynamic analysis vol.75, pp.5, 2017, https://doi.org/10.12989/sem.2020.75.5.541
- Closure to “Choices of Structure-Dependent Pseudodynamic Algorithms” by Shuenn-Yih Chang vol.146, pp.12, 2017, https://doi.org/10.1061/(asce)em.1943-7889.0001866
- Discussion of Paper ‘Improved Explicit Integration Algorithms for Structural Dynamic Analysis with Unconditional Stability and Controllable Numerical Dissipation’ by Chinmoy Kolay & Ja vol.25, pp.14, 2021, https://doi.org/10.1080/13632469.2019.1662345