References
- Adomian, G. (1986), Nonlinear Stochastic Operator Equations, Academic Press, Orlando.
- Adomian, G. (1994), Solving Frontier Problems of Physics: The Decomposition Method, Kluwer Academic Publishers, Boston.
- Arikoglu, A. and Ozkol, I. (2010), "Vibration analysis of composite sandwich beams with viscoelastic core by using differential transform method", Compos. Struct., 92, 3031-3039. https://doi.org/10.1016/j.compstruct.2010.05.022
- Aydin, S. and Bozdogan, B. (2016), "Lateral stability analysis of multistorey buildings using the differential transform method", Struct. Eng. Mech., 57(5), 861-876. https://doi.org/10.12989/sem.2016.57.5.861
- Bozyigit, B. and Yesilce, Y. (2016), "Dynamic stiffness approach and differential transformation for free vibration analysis of a moving Reddy-Bickford beam", Struct. Eng. Mech., 58(5), 847-868. https://doi.org/10.12989/sem.2016.58.5.847
- Catal, S. (2006), "Analysis of free vibration of beam on elastic soil using differential transform method", Struct. Eng. Mech., 24(1), 51-62. https://doi.org/10.12989/sem.2006.24.1.051
- Catal, S. (2008), "Solution of free vibration equations of beam on elastic soil by using differential transform method", Appl. Math. Model., 32, 1744-1757. https://doi.org/10.1016/j.apm.2007.06.010
- Catal, S. and Catal, H.H. (2006), "Buckling analysis of partially embedded pile in elastic soil using differential transform method", Struct. Eng. Mech., 24(2), 247-268. https://doi.org/10.12989/sem.2006.24.2.247
- Chang, W.J. and Lee, H.L. (2009), "Free vibration of a single-walled carbon nanotube containing a fluid flow using the Timoshenko beam model", Phys. Lett. A, 373, 982-985. https://doi.org/10.1016/j.physleta.2009.01.011
- Chellapilla, K.O. and Simha, H.S. (2007), "Critical velocity of fluid-conveying pipes resting on two-parameter foundation", J. Sound Vib., 302, 387-397. https://doi.org/10.1016/j.jsv.2006.11.007
- Dai, H.L., Wang, L., Qian, Q. and Gan, J. (2012), "Vibration analysis of three-dimensional pipes conveying fluid with consideration of steady combined force by transfer matrix method", Appl. Math. Comput., 219, 2453-2464.
- Ebrahimi, F. and Salari, E. (2015), "Size-dependent free flexural vibrational behavior of functionally graded nanobeams using semi-analytical differential transform method", Compos. Part B, 79, 156-169. https://doi.org/10.1016/j.compositesb.2015.04.010
- Erdonmez, U. and Ozkol, İ. (2010), "Optimal shape analysis of a column structure under various loading conditions by using differential transform method (DTM)", Appl. Math. Comput., 216, 3172-3183.
- Gu, J., An, C., Duan, M., Levi, C. and Su, J. (2013), "Integral transform solutions of dynamic response of a clamped-clamped pipe conveying fluid", Nucl. Eng. Des., 254, 237-245. https://doi.org/10.1016/j.nucengdes.2012.09.018
- Hsu, J.C., Lai, H.Y. and Chen, C.K. (2008), "Free vibration of non-uniform Euler-Bernoulli beams with general elastically end constraints using Adomian modified decomposition method", J. Sound Vib., 318, 965-981. https://doi.org/10.1016/j.jsv.2008.05.010
- Hsu, J.C., Lai, H.Y. and Chen, C.K. (2009), "An innovative eigenvalue problem solver for free vibration of uniform Timoshenko beams by using the Adomian modified decomposition method", J. Sound Vib., 325, 451-470. https://doi.org/10.1016/j.jsv.2009.03.015
- Jamali, M., Shojaee, T., Kolahchi, R. and Mohammadi, B. (2016), "Buckling analysis of nanocomposite cut out plate using domain decomposition method and orthogonal polynomials", Steel Compos. Struct., 22(3), 691-712. https://doi.org/10.12989/scs.2016.22.3.691
- Kheiri, M., Paidoussis, M.P., Costa Del Pozo, G. and Amabili, M. (2014), "Dynamics of a pipe conveying fluid flexibly restrained at the ends", J. Fluid. Struct., 49, 360-385. https://doi.org/10.1016/j.jfluidstructs.2013.11.023
- Kubenko, V.D., Koval'chuk, P.S. and Kruk, L.A. (2011), "Influence of external loading on the stability of a fluid-conveying pipeline", Int. Appl. Mech., 47(6), 636-644. https://doi.org/10.1007/s10778-011-0486-6
- Lal, R. and Ahlawat, N. (2015), "Axisymmetric vibrations and buckling analysis of functionally graded circular plates via differential transform method", Eur. J. Mech. A/Solid., 52, 85-94. https://doi.org/10.1016/j.euromechsol.2015.02.004
- Lee, U., Jang, I. and Go, H. (2009), "Stability and dynamic analysis of oil pipelines by using spectral element method", J. Loss Prev. Proc. Indus., 22, 873-878. https://doi.org/10.1016/j.jlp.2008.08.002
- Lin, W. and Qiao, N. (2008), "In-plane vibration analyses of curved pipes conveying fluid using the generalized differential quadrature rule", Comput. Struct., 86, 133-139. https://doi.org/10.1016/j.compstruc.2007.05.011
- Mao, Q. (2011), "Free vibration analysis of multiple-stepped beams by using Adomian decomposition method", Math. Comput. Model., 54, 756-764. https://doi.org/10.1016/j.mcm.2011.03.019
- Mao, Q. (2012), "Free vibration analysis of elastically connected multiple-beams by using the Adomian modified decomposition method", J. Sound Vib., 331, 2532-2542. https://doi.org/10.1016/j.jsv.2012.01.028
- Mao, Q. (2015), "AMDM for free vibration analysis of rotating tapered beams", Struct. Eng. Mech., 54(3), 419-432. https://doi.org/10.12989/sem.2015.54.3.419
- Mao, Q. and Pietrzko, S. (2010a), "Design of shaped piezoelectric modal sensor for beam with arbitrary boundary conditions by using Adomian decomposition method", J. Sound Vib., 329, 2068-2082. https://doi.org/10.1016/j.jsv.2009.12.016
- Mao, Q. and Pietrzko, S. (2010b), "Free vibration analysis of stepped beams by using Adomian decomposition method", Appl. Math. Comput., 217, 3429-3441.
- Mao, Q. and Pietrzko, S. (2012), "Free vibration analysis of a type of tapered beams by using Adomian decomposition method", Appl. Math. Comput., 219, 3264-3271.
- Ni, Q., Zhang, Z.L. and Wang, L. (2011), "Application of the differential transformation method to vibration analysis of pipes conveying fluid", Appl. Math. Comput., 217, 7028-7038.
- Sweilam, N.H. and Khader, M.M. (2010), "Approximate solutions to the nonlinear vibrations of multiwalled carbon nanotubes using Adomian decomposition method", Appl. Math. Comput., 217, 495-505.
- Tapaswini, S. and Chakraverty, S. (2014), "Dynamic response of imprecisely defined beam subject to variousloads using Adomian decomposition method", Appl. Soft Comput., 24, 249-263. https://doi.org/10.1016/j.asoc.2014.06.052
- Tong, Z., Zhang, Y., Zhang, Z. and Hua, H. (2007), "Dynamic behavior and sound transmission analysis of a fluid-structure coupled system using the direct-BEM/FEM", J. Sound Vib., 299, 645-655. https://doi.org/10.1016/j.jsv.2006.06.063
- Vedula, N.L. (1999), "Dynamics and stability of parametrically excited gyroscopic systems", Ph.D. Thesis of University of Missouri, Rolla, America.
- Wazwaz, A.M. (1998), "A comparison between Adomian decomposition method and Taylor series method in the series solutions", Appl. Math. Comput., 97, 37-44.
- Wazwaz, A.M. (1999), "A reliable modification of Adomian decomposition method", Appl. Math. Comput., 102, 77-86.
- Wazwaz, A.M. (2000), "A new algorithm for calculating Adomian polynomials for nonlinear operators", Appl. Math. Comput., 11, 53-69.
- Yesilce, Y. (2010), "Differential transform method for free vibration analysis of a moving beam", Struct. Eng. Mech., 35(5), 645-658. https://doi.org/10.12989/sem.2010.35.5.645
- Yesilce, Y. (2013), "Determination of natural frequencies and mode shapes of axially moving Timoshenko beams with different boundary conditions using differential transform method", Adv. Vib. Eng., 12(1), 90-108.
- Yesilce, Y. (2015), "Differential transform method and numerical assembly technique for free vibration analysis of the axial-loaded Timoshenko multiple-step beam carrying a number of intermediate lumped masses and rotary inertias", Struct. Eng. Mech., 53(3), 537-573. https://doi.org/10.12989/sem.2015.53.3.537
- Yi-min, H., Seng, G., Wei, W. and Jie, H. (2012), "A direct method of natural frequency analysis on pipeline conveying fluid with both ends supported", Nucl. Eng. Des., 253, 12-22. https://doi.org/10.1016/j.nucengdes.2012.07.022
- Yi-Min, H., Yong-shou, L., Bao-hui, L., Yan-jiang, L. and Zhufeng, Y. (2010), "Natural frequency analysis of fluid conveying pipeline with different boundary conditions", Nucl. Eng. Des., 240, 461-467. https://doi.org/10.1016/j.nucengdes.2009.11.038
- Zhou, J.K. (1986), Differential Transformation and its Applications for Electrical Circuits, Huazhong University Press, Wuhan China.
Cited by
- Transverse free vibration and stability analysis of spinning pipes conveying fluid vol.137, 2018, https://doi.org/10.1016/j.ijmecsci.2018.01.015
- Dynamic stability of nanocomposite Mindlin pipes conveying pulsating fluid flow subjected to magnetic field vol.67, pp.1, 2017, https://doi.org/10.12989/sem.2018.67.1.021
- Dynamic instability response in nanocomposite pipes conveying pulsating ferrofluid flow considering structural damping effects vol.68, pp.3, 2018, https://doi.org/10.12989/sem.2018.68.3.359
- Dynamic behavior of axially functionally graded simply supported beams vol.25, pp.6, 2017, https://doi.org/10.12989/sss.2020.25.6.669
- Review of Dynamic Response of Buried Pipelines vol.12, pp.2, 2017, https://doi.org/10.1061/(asce)ps.1949-1204.0000527