참고문헌
- Aboudi, J. (1988), "Micro-mechanical analysis of the strength of unidirectional fibre composites", Compos. Sci. Technol., 33, 79-96. https://doi.org/10.1016/0266-3538(88)90012-7
- Aboudi, J. (1989), "Micro-mechanical analysis of composites by the method of cells", Appl. Mech. Rev., 42, 193-221. https://doi.org/10.1115/1.3152428
- Adams, D.F. (1970), "Inelastic analysis of a unidirectional composite subjected to transverse normal loading". J. Compos. Mater., 4, 310-328. https://doi.org/10.1177/002199837000400303
- Adams, D.F. and Crane, D.A. (1984), "Combined loading micromechanical analysis of a unidirectional composite", Compos., 15(3), 181-192. https://doi.org/10.1016/0010-4361(84)90273-8
- Adams, D.F. and Crane, D.A. (1984), "Finite element micromechanical analysis of a unidirectional composite including longitudinal shear loading", Comput. Struct., 18(6), 1153-1165, https://doi.org/10.1016/0045-7949(84)90160-3
- Adams, D.F. and Doner, D.R. (1967), "Transverse normal loading of a unidirectional composite", J. Compos. Mater., 1, 152-164. https://doi.org/10.1177/002199836700100205
- Aghaei, M., Forouzan M.R., Nikforouz, M. and Shahabi, E. (2015), "A study on different failure criteria to predict damage in glass/polyester composite beams under low velocity impact", Steel Compos. Struct., 18(5), 2015
- Aghdam, M.M, Pavier, M.J. and Smith, D.J. (2001), "Micro-mechanics of off-axis loading of fibrous composites using finite element analysis", Int. J. Solid. Struct., 38(22), 3905-3925. https://doi.org/10.1016/S0020-7683(00)00248-1
- Aghdam, M.M., Smith, D.J. and Pavier, M.J. (2000), "Finite element micro-mechanical modeling of yield and collapse behaviour of metal matrix composites", J. Mech. Phys. Solid., 48(3), 499-528. https://doi.org/10.1016/S0022-5096(99)00041-1
- Ahmadi, I. and Aghdam, M.M. (2010a), "Micromechanics of fibrous composites subjected to combined shear and thermal loading using a truly meshless method", Comput. Mech., 64(3), 387-398.
- Ahmadi, I. and Aghdam, M.M. (2010b), "Analysis of micro-stresses in the SiC/Ti metal matrix composite using a truly local meshless method", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 224(8), 1567-1577. https://doi.org/10.1243/09544062JMES1888
- Atluri, S.N. and Shen, S. (2002), The Meshless Local Petrov-Galerkin (MLPG) Method, Tech Science Press.
- Atluri, S.N. and Zhu, T. (1998), "A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics", Comput. Mech., 22, 117-127. https://doi.org/10.1007/s004660050346
- Atluri, S.N. and Zhu, T. (2000), "The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elastostatics", Comput. Mech., 25, 169-179. https://doi.org/10.1007/s004660050467
- Belinha, J. and Dinis, L.M.J.S. (2006), "Analysis of plates and laminates using the element-free Galerkin method", Comput. Struct., 84, 1547-1559. https://doi.org/10.1016/j.compstruc.2006.01.013
- Belytschco, T., Lu, Y.Y. and Gu, L. (1995), "Crack Propagation by Element Free Galerkin Methods", Eng. Fract. Mech., 51(2), 211-222.
- Belytschko, T., Lu, Y.Y. and Gu, L. (1994), "Element-free Galerkin methods", Int. J. Numer. Meth. Eng., 37, 229-256. https://doi.org/10.1002/nme.1620370205
- Brockenbrough, J.R., Suresh, S. and Wienecke, H.A. (1991), "Deformation of metal-matrix composites with continuous fibers: Geometrical effects of fiber distribution and shape", Acta Metall. Mater., 5, 735-752.
- Carvelli, V. and Corigliano, A. (2004), "Transverse resistance of long-fibre composites: influence of the fibre-matrix interface", Proceedings of the 11th European conference on composite materials ECCM11, Rhodes, Greece, May-June.
- Cheng, J.Q. Lee, H.P. and Li, H. (2004), "Development of a meshless finite mixture (MFM) method", Struct. Eng. Mech., 17(5), 671-690. https://doi.org/10.12989/sem.2004.17.5.671
- Ching, H.K. and Batra, R.C. (2001), "Determination of crack tip fields in linear elastostatics by the meshless local Petrov-Galerkin (MLPG) method", CMES: Comput. Model. Eng. Sci., 2(2), 273-290.
- Cooper, G.A. (1966), "Orientation effects in fibre-reinforced metals", J. Mech. Phys. Solid., 14, 103-111. https://doi.org/10.1016/0022-5096(66)90041-X
- Dang, T.D. and Sankar, B.V. (2008), "Meshless local Petrov-Galerkin micromechanical analysis of periodic composites including shear loadings", CMES: Comput. Model. Eng. Sci., 26(3), 169-187.
- Dvorak, G.J., Rao, M.S.M. and Tarn, J.Q. (1973), "Yielding in unidirectional Composites under external loads and temperature changes", J. Compos. Mater., 7, 194-216. https://doi.org/10.1177/002199837300700204
- Erfani, S. and Akrami, V. (2016), "Evaluation of cyclic fracture in perforated beams using micromechanical fatigue model", Struct. Eng. Mech., 20(4), 913-930.
- Foy, R.L. (1973) "Theoretical post-yielding behaviour of composite laminates part I- Inelastic micromechanics", J. Compos. Mater., 7, 179-193.
- Gu, Y.T. and Liu, G.R. (2001), "A meshless local Petrov-Galerkin (MLPG) formulation for static and free vibration analysis of thin plates", CMES: Comput. Model. Eng. Sci., 2(4), 463-476.
- Hassanzadeh-Aghdam, M.K., Mahmoodi, M.J. and Ansari, R. (2015), "Interphase effects on the thermo-mechanical properties of three-phase composites", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 230(19), 3361-3371. https://doi.org/10.1177/0954406215612830
- Hu, S. (1996), "The transverse failure of a single-fiber metal-matrix composite: Experiment and modeling", Compos. Sci. Technol., 56, 667-676 https://doi.org/10.1016/0266-3538(96)00051-6
- Jackson, P.W. and Cratchley, D. (1966), "The effect of fibre orientation on the tensile strength of fibre- reinforced metals", J. Mech. Phys. Solid., 14, 49-64. https://doi.org/10.1016/0022-5096(66)90019-6
- Kanok-Nukulchai, W., Barry, W.J. and Saran-Yasoontorn, K. (2001), "Meshless formulation for shear-lockling free bending elements", Struct. Eng. Mech., 11(2), 123-132. https://doi.org/10.12989/sem.2001.11.2.123
- Lekhnitskii, S.G. (1963), Theory of Elasticity of an Anisotropic Elastic Body, Holden Day Inc., San Francisco. (English translation from Russian)
- Li, D.S. and Wisnom, M.R. (1996), "Micromechanical modeling of SCS-6 fiber reinforced Ti-6Al-4V under transverse tensioneffect of fiber coating", Comput. Mater., 30(5), 561-88. https://doi.org/10.1177/002199839603000502
- Liu, W.K., Chen. Y., Chang, C.T. and Belytschko, T. (1996), "Advances in multiple scale kernel particle methods", Comput. Mech., 18, 73-111. https://doi.org/10.1007/BF00350529
- Long, S.Y., Liu, K.Y. and Hu, D.A. (2006), "A new meshless method based on MLPG for elastic dynamic problems", Eng. Anal. Bound. Elem., 30, 43-48. https://doi.org/10.1016/j.enganabound.2005.09.001
- Melro, A.R., Camanho, P.P., Andrade, Pires, F.M. and Pinho, S.T. (2013), "Micromechanical analysis of polymer composites reinforced by unidirectional fibres: Part II-micromechanical analyses", Int. J. Solid. Struct., 50, 1906-1915. https://doi.org/10.1016/j.ijsolstr.2013.02.007
- Moncada, A.M., Chattopadhyay, A., Bednarcyk, B.A. and Arnold, S.M. (2012), "Micromechanics-based progressive failure analysis of composite laminates using different constituent failure theories", J. Reinf. Plast. Compos., 21, 1467-1487.
- Naik, R.A. and Crews, Jr J.H. (1993), "Micromechanical analysis of fiber-matrix interface stresses under thermomechanical loadings", Composite Materials: Testing and Design (Vol. II), ASTM STP 1206, American Society for Testing and Materials, Philadelphia, PA, 205-219.
- Nayroles, B., Touzot, B. and Villon, P. (1992), "Generalizing the finite element method: diffuse approximation and diffuse elements", Comput. Mech., 10, 307-318. https://doi.org/10.1007/BF00364252
- Nedele, M.R. and Wisnom, M.R. (1994), "Finite element micromechanical modeling of a unidirectional composite subjected to axial shear loading", Compos., 25(44), 263-272. https://doi.org/10.1016/0010-4361(94)90218-6
- Nimmer, R.P. (1990), "Fibre-matrix interface effects in the presence of thermally induced residual stress", J. Compos. Tech. Res. JCTRER, 12(2), 65-75. https://doi.org/10.1520/CTR10181J
- Nimmer, R.P., Bankert, R.J., Russell, E.S., Smith, G.A. and Wright, P.K. (1991), "Micromechanical modeling of fiber/matrix interface effects in transversely loaded SiC/Ti-6-4 metal matrix composites", J. Compos. Tech. Res. JCTRER, 13(1), 3-13. https://doi.org/10.1520/CTR10068J
- Pipes, R.B. and Cole, B.W. (1973), "On the off-axis strength test for anisotropic materials", J. Compos. Mater., 7, 246-256. https://doi.org/10.1177/002199837300700208
- Rohwer, K. (2015), "Predicting fiber composite damage and failure", J. Compos. Mater., 49(21), 2673-2683. https://doi.org/10.1177/0021998314553885
- Sayyidmousavia, A., Bougheraraa, H. and Fawaz, Z. (2014), "A micromechanical approach for the fatigue failure prediction of unidirectional polymer matrix composites in off-axis loading including the effect of viscoelasticity", Adv. Compos. Mater., 24, 65-77.
- Sirivedin, S., Han, S.Y. and Lee, K.S. (2007), "Micromechanics analysis of progressive failure in cross-ply carbon fiber/epoxy composite under uniaxial loading", J. Mech. Sci. Technol., 21(12), 2023-2030. https://doi.org/10.1007/BF03177460
- Sladek, J., Sladek, V., Krivacek, J., Wen, P.H. and Zhang, Ch. (2007), "Meshless local Petrov-Galerkin (MLPG) method for Reissner-Mindlin plates under dynamic load", Comput. Meth. Appl. Mech. Eng., 196, 2681-2691 https://doi.org/10.1016/j.cma.2007.01.014
- Sun, C.T. and Vaidya, R.S. (1996) "Prediction of composite properties from a representative volume element", Compos. Sci. Tech., 56, 171-179. https://doi.org/10.1016/0266-3538(95)00141-7
- Totry, E., Gonzalez, C. and LLorca, J. (2008), "Prediction of the failure locus of C/PEEK composites under transverse compression and longitudinal shear through computational micromechanics", Compos. Sci. Tech., 68(15-16), 3128-3136. https://doi.org/10.1016/j.compscitech.2008.07.011
- Vaughan, T.J. and McCarthy, C.T. (2011), "Micromechanical modeling of the transverse damage behaviour in fibre reinforced composites", Compos. Sci. Tech., 71, 388-396. https://doi.org/10.1016/j.compscitech.2010.12.006
- Wisnom, M.R. (1990), "Factors affecting the transverse tensile strength of unidirectional continuous Silicon Carbide fibre reinforced 6061Aluminum", J. Compos Mater., 24(7), 707-726. https://doi.org/10.1177/002199839002400702
- Zahl, D.B., Schmauder, S. and McMeeking, R.M. (1994), "Transverse strength of metal matrix composites reinforced with strongly bonded continuous in regular arrangements", Acta Metallurgica et Materialia, 42(9), 2983-2997. https://doi.org/10.1016/0956-7151(94)90395-6
- Zhu, C. and Sun, C.T. (2003), "Micromechanical modeling of fiber composites under off-axis loading", J. Thermoplas. Compos. Mater., 16, 333-344. https://doi.org/10.1177/0892705703016004004
피인용 문헌
- A 3D RVE model with periodic boundary conditions to estimate mechanical properties of composites vol.72, pp.6, 2017, https://doi.org/10.12989/sem.2019.72.6.713