DOI QR코드

DOI QR Code

Analysis of plane frame structure using base force element method

  • Peng, Yijiang (Key Laboratory of Urban Security and Disaster Engineering, Ministry of Education, Beijing University of Technology) ;
  • Bai, Yaqiong (Key Laboratory of Urban Security and Disaster Engineering, Ministry of Education, Beijing University of Technology) ;
  • Guo, Qing (Key Laboratory of Urban Security and Disaster Engineering, Ministry of Education, Beijing University of Technology)
  • Received : 2016.07.23
  • Accepted : 2016.11.01
  • Published : 2017.04.10

Abstract

The base force element method (BFEM) is a new finite element method. In this paper, a degenerated 4-mid-node plane element from concave polygonal element of BFEM was proposed. The performance of this quadrilateral element with 4 mid-edge nodes in the BFEM on complementary energy principle is studied. Four examples of linear elastic analysis for plane frame structure are presented. The influence of aspect ratio of the element is analyzed. The feasibility of the 4 mid-edge node element model of BFEM on complementary energy principles researched for plane frame problems. The results using the BFEM are compared with corresponding analytical solutions and those obtained from the standard displacement finite element method. It is revealed that the BFEM has better performance compared to the displacement model in the case of large aspect ratio.

Keywords

Acknowledgement

Supported by : National Science Foundation of China, Beijing Natural Science Foundation, Ministry of Education, Beijing University of Technology

References

  1. Cen, S., Fu, X.R. and Zhou, M.J.(2011), "8- and 12-node plane hybrid stress-function elements immune to severely distorted mesh containing elements with concave shapes", Comput. Meth. Appl. Mech. Eng., 200(29-32), 2321-2336. https://doi.org/10.1016/j.cma.2011.04.014
  2. Cen, S., Fu, X.R., Zhou, G.H., Zhou, M.J. and Li, C.F. (2011), "Shape-free finite element method: The plane Hybrid Stress-Function (HS-F) element method for anisotropic materials", Sci. China Phys. Mech. Astron., 54(4), 653-665. https://doi.org/10.1007/s11433-011-4272-6
  3. Cen, S., Zhou, M.J. and Fu, X.R. (2011), "A 4-node hybrid stress-function (HS-F) plane element with drilling degrees of freedom less sensitive to severe mesh distortions", Comput. Struct., 89(5-6), 517-528. https://doi.org/10.1016/j.compstruc.2010.12.010
  4. Chen, J., Li, C.J. and Chen, W.J. (2010), "A family of spline finite elements", Comput. Struct., 88(11-12), 718-727. https://doi.org/10.1016/j.compstruc.2010.02.011
  5. Darilmaz, K. (2005), "An assumed-stress finite element for static and free vibration analysis of Reissner-Mindlin plates", Struct. Eng. Mech., 19(2), 199-215. https://doi.org/10.12989/sem.2005.19.2.199
  6. De Veubeke, B.F. (1965), "Displacementand equilibrium models in the finite element method", Stress Anal., 9, 145-197.
  7. de Veubeke, B.F. (1972), "A new variational principle for finite elastic displacements", Int. J. Eng. Sci., 10(9), 745-763. https://doi.org/10.1016/0020-7225(72)90079-1
  8. Fu, X.R., Cen, S., Li, C.F. And Chen, X.M. (2010), "Analytical trial function method for development of new 8-node plane element based on the variational principle containing airy stress function", Eng. Comput., 27(4), 442-463. https://doi.org/10.1108/02644401011044568
  9. Gao, Y.C. (2003), "A new description of the stress state at a point with applications", Arch. Appl. Mech., 73(3-4), 171-183. https://doi.org/10.1007/s00419-003-0278-5
  10. Hughes, T.J.R. (1980), "Generalization of selective integration procedures to anisotropic and nonlinear media", Int. J. Numer. Meth. Eng., 15(9), 1413-1418. https://doi.org/10.1002/nme.1620150914
  11. Liu, G.R., Dai, K.Y. and Nguyen, T.T. (2007), "A smoothed finite element method for mechanics problems", Comput. Mech., 39(6), 859-877. https://doi.org/10.1007/s00466-006-0075-4
  12. Liu, G.R., Nguyen-Thoi, T. and Lam, K.Y. (2008), "A novel alpha finite element method (${\alpha}FEM$) for exact solution to mechanics problems using triangular and tetrahedral elements", Comput. Meth. Appl. Mech. Eng., 197(45-48), 3883-3897. https://doi.org/10.1016/j.cma.2008.03.011
  13. Liu, Y.H., Peng, Y.J., Zhang, L.J. and Guo, Q. (2013), "A 4-mode-node plane model of base force element method on complement energy principle", Math. Prob. Eng., 2013, 1-8.
  14. Long, Y.Q. and Huang, M.F. (1988), "A generalized conforming isoparametric element", Appl. Math. Mech., 9(10), 929-936. https://doi.org/10.1007/BF02014599
  15. Long, Y.Q., Cen, S. and Long, Z.F. (2009), Advanced Finite Element Method in Structural Engineering, Springer-Verlag GmbH/Tsinghua University Press, Berlin, Heidelberg/Beijing.
  16. Long, Y.Q., Li, J.X., Long, Z.F. and Cen, S. (1999), "Area coordinates used in quadrilateral elements", Commun. Numer. Meth. Eng., 15(8), 533-545. https://doi.org/10.1002/(SICI)1099-0887(199908)15:8<533::AID-CNM265>3.0.CO;2-D
  17. Long, Z.F., Cen, S., Wang, L., Fu, X.R. and Long, Y.Q. (2010), "The third form of the quadrilateral area coordinate method (QACM-III): theory, application, and scheme of composite coordinate interpolation", Finite Elem. Anal. Des., 46(10), 805-818. https://doi.org/10.1016/j.finel.2010.04.008
  18. Long, Z.F., Li, J.X., Cen, S. and Long, Y.Q. (1999), "Some basic formulae for area coordinates used in quadrilateral elements", Commun. Numer. Meth. Eng., 15(12), 841-852. https://doi.org/10.1002/(SICI)1099-0887(199912)15:12<841::AID-CNM290>3.0.CO;2-A
  19. Moes, N., Dolbow, J. and Belytschko, T. (1999), "A finite element method for crack growth without remeshing", Int. J. Numer. Meth. Eng., 46(1), 131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
  20. Patnaik, S.N. (1973), "An integrated force method for discrete analysis", Int. J. Numer. Meth. Eng., 6(2), 237-251. https://doi.org/10.1002/nme.1620060209
  21. Patnaik, S.N. (1986), "The integrated force method versus thestandard force method", Comput. Struct., 22(2), 151-163. https://doi.org/10.1016/0045-7949(86)90061-1
  22. Patnaik, S.N. (1986), "The variational energy formulation for the integrated force method", AIAA J., 24(1), 129-136. https://doi.org/10.2514/3.9232
  23. Patnaik, S.N., Berke, L. and Gallagher, R.H. (1991), "Integrated force method versus displacement method for finite element analysis", Comput. Struct., 38(4), 377-407. https://doi.org/10.1016/0045-7949(91)90037-M
  24. Peng, Y.J. and Liu, Y.H. (2009), "Base force element method (BFEM) of complementary energy principle for large rotation problems". Acta Mechanica Sinica, 25(4), 507-515. https://doi.org/10.1007/s10409-009-0234-x
  25. Peng, Y.J., Dong, Z.L., Peng, B. and Liu, Y.H. (2011), "Base force element method(BFEM) on potential energy principle for elasticity problems", Int. J. Mech. Mech. Des., 7(3), 245-251. https://doi.org/10.1007/s10999-011-9162-6
  26. Peng, Y.J., Guo, Q., Zhang, Z.F. and Shan, Y.Y. (2015), "Application of base force element method on complement energy principle to rock mechanics problems", Math. Prob. Eng., 25(4), 1-16.
  27. Peng, Y.J., Zhang, L.J., Pu, J.W. and Guo, Q. (2014), "A two-dimensional base force element method using concave polygonal mesh", Eng. Anal. Bound. Elem., 42, 45-50. https://doi.org/10.1016/j.enganabound.2013.09.002
  28. Peng, Y.J., Zong, N.N., Zhang, L.J. and Pu, J.W. (2014), "Application of 2D base force element method with complementary energy principle for arbitrary meshes", Eng. Comput., 31(4), 1-15.
  29. Pian, T.H.H. (1964),"Derivation of element stiffness matrices by assumed stress distributions", AIAA J., 2(7), 1333-1336. https://doi.org/10.2514/3.2546
  30. Pian, T.H.H. and Chen, D.P. (1982), "Alternative ways for formulation of hybrid stress elements", Int. J. Numer. Meth. Eng., 18(11), 1679-1684. https://doi.org/10.1002/nme.1620181107
  31. Pian, T.H.H. and Sumihara, K. (1984), "Rational approach for assumed stress finite elements", Int. J. Numer. Meth. Eng., 20(9), 1685-1695. https://doi.org/10.1002/nme.1620200911
  32. Piltner, R. and Taylor, R.L. (1995), "A quadrilateral mixed finite element with two enhanced strain modes" Int. J. Numer. Meth. Eng., 38(11), 1783-1808. https://doi.org/10.1002/nme.1620381102
  33. Rajendran, S. and Liew, K.M. (2003), "A novel unsymmetric 8node plane element immune to mesh distortion under a quadratic displacement field", Int. J. Numer. Meth. Eng., 58(11), 1713-1748. https://doi.org/10.1002/nme.836
  34. Santos, H.A.F.A. and Paulo, C.A. (2011), "On a pure complementary energy principle and a force-based finite element formulation for nonlinear elastic cables", Int. J. Nonlin. Mech., 46(2), 395-406. https://doi.org/10.1016/j.ijnonlinmec.2010.10.005
  35. Santos, H.A.F.A. (2011), "Complementary-energy methods for geometrically non-linear structural models: an overview and recent developments in the analysis of frames", Arch. Comput. Meth. Eng., 18(4), 405-440. https://doi.org/10.1007/s11831-011-9065-6
  36. Santos, H.A.F.A. (2015), "A novel updated Lagrangian complementary energy-based formulation for the elastica problem: force-based finite element model", Acta Mechanica, 226(4), 1133-1151. https://doi.org/10.1007/s00707-014-1237-7
  37. Santos, H.A.F.A. and Moitinho de Almeida, J.P. (2010), "Equilibrium-based finite element formulation for the geometrically exact analysis of planar framed structures", J. Eng. Mech., 136(12), 1474-1490. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000190
  38. Santos, H.A.F.A. and Moitinho de Almeida, J.P. (2014), "A family of Piola-Kirchhoff hybrid stress finite elements for two-dimensional linear elasticity", Finite Elem. Anal. Des., 85, 33-49. https://doi.org/10.1016/j.finel.2014.03.005
  39. Simo J.C. and Hughes, T.J.R. (1986), "On the variational foundations of assumed strain methods", J. Appl. Mech., 53(1), 51-54. https://doi.org/10.1115/1.3171737
  40. Tang, L.M., Chen, W.J. and Liu, Y.G. (1984), "Formulation of quasi-conforming element and Hu-Washizu principle", Comput. Struct., 19(1-2), 247-250. https://doi.org/10.1016/0045-7949(84)90224-4
  41. Wilson E.L., Tayler R.L., Doherty W.P. and Ghaboussi J.(1973), Incompatible Displacement Models, Numerical and Computational Methods in Structural Mechanics, Eds. Fenves, S.J. et al., Academic Press, New York.
  42. Zhang, C.H., Wang, D.D., Zhang, J.L., Feng, W. and Huang, Q. (2007), "On the equivalence of various hybrid finite elements and a new orthogonalization method for explicit element stiffness formulation", Finite Elem. Anal. Des., 43(4), 321-332. https://doi.org/10.1016/j.finel.2006.11.002
  43. Zienkiewicz, R.L. and Taylorand, O.C. (1979), "Complementary energy with penalty functions in finite element analysis", Energy Methods in Finite Element Analysis, (A 79-53076 24-39), Chichester, Sussex, England, Wiley-Interscience.

Cited by

  1. Mesomechanical properties of concrete with different shapes and replacement ratios of recycled aggregate based on base force element method vol.20, pp.4, 2019, https://doi.org/10.1002/suco.201800261
  2. Finite elements for problems of the elasticity theory with the discontinuous stress approximation vol.224, pp.None, 2017, https://doi.org/10.1051/e3sconf/202022402012