Acknowledgement
Supported by : National Science Foundation of China, Beijing Natural Science Foundation, Ministry of Education, Beijing University of Technology
References
- Cen, S., Fu, X.R. and Zhou, M.J.(2011), "8- and 12-node plane hybrid stress-function elements immune to severely distorted mesh containing elements with concave shapes", Comput. Meth. Appl. Mech. Eng., 200(29-32), 2321-2336. https://doi.org/10.1016/j.cma.2011.04.014
- Cen, S., Fu, X.R., Zhou, G.H., Zhou, M.J. and Li, C.F. (2011), "Shape-free finite element method: The plane Hybrid Stress-Function (HS-F) element method for anisotropic materials", Sci. China Phys. Mech. Astron., 54(4), 653-665. https://doi.org/10.1007/s11433-011-4272-6
- Cen, S., Zhou, M.J. and Fu, X.R. (2011), "A 4-node hybrid stress-function (HS-F) plane element with drilling degrees of freedom less sensitive to severe mesh distortions", Comput. Struct., 89(5-6), 517-528. https://doi.org/10.1016/j.compstruc.2010.12.010
- Chen, J., Li, C.J. and Chen, W.J. (2010), "A family of spline finite elements", Comput. Struct., 88(11-12), 718-727. https://doi.org/10.1016/j.compstruc.2010.02.011
- Darilmaz, K. (2005), "An assumed-stress finite element for static and free vibration analysis of Reissner-Mindlin plates", Struct. Eng. Mech., 19(2), 199-215. https://doi.org/10.12989/sem.2005.19.2.199
- De Veubeke, B.F. (1965), "Displacementand equilibrium models in the finite element method", Stress Anal., 9, 145-197.
- de Veubeke, B.F. (1972), "A new variational principle for finite elastic displacements", Int. J. Eng. Sci., 10(9), 745-763. https://doi.org/10.1016/0020-7225(72)90079-1
- Fu, X.R., Cen, S., Li, C.F. And Chen, X.M. (2010), "Analytical trial function method for development of new 8-node plane element based on the variational principle containing airy stress function", Eng. Comput., 27(4), 442-463. https://doi.org/10.1108/02644401011044568
- Gao, Y.C. (2003), "A new description of the stress state at a point with applications", Arch. Appl. Mech., 73(3-4), 171-183. https://doi.org/10.1007/s00419-003-0278-5
- Hughes, T.J.R. (1980), "Generalization of selective integration procedures to anisotropic and nonlinear media", Int. J. Numer. Meth. Eng., 15(9), 1413-1418. https://doi.org/10.1002/nme.1620150914
- Liu, G.R., Dai, K.Y. and Nguyen, T.T. (2007), "A smoothed finite element method for mechanics problems", Comput. Mech., 39(6), 859-877. https://doi.org/10.1007/s00466-006-0075-4
-
Liu, G.R., Nguyen-Thoi, T. and Lam, K.Y. (2008), "A novel alpha finite element method (
${\alpha}FEM$ ) for exact solution to mechanics problems using triangular and tetrahedral elements", Comput. Meth. Appl. Mech. Eng., 197(45-48), 3883-3897. https://doi.org/10.1016/j.cma.2008.03.011 - Liu, Y.H., Peng, Y.J., Zhang, L.J. and Guo, Q. (2013), "A 4-mode-node plane model of base force element method on complement energy principle", Math. Prob. Eng., 2013, 1-8.
- Long, Y.Q. and Huang, M.F. (1988), "A generalized conforming isoparametric element", Appl. Math. Mech., 9(10), 929-936. https://doi.org/10.1007/BF02014599
- Long, Y.Q., Cen, S. and Long, Z.F. (2009), Advanced Finite Element Method in Structural Engineering, Springer-Verlag GmbH/Tsinghua University Press, Berlin, Heidelberg/Beijing.
- Long, Y.Q., Li, J.X., Long, Z.F. and Cen, S. (1999), "Area coordinates used in quadrilateral elements", Commun. Numer. Meth. Eng., 15(8), 533-545. https://doi.org/10.1002/(SICI)1099-0887(199908)15:8<533::AID-CNM265>3.0.CO;2-D
- Long, Z.F., Cen, S., Wang, L., Fu, X.R. and Long, Y.Q. (2010), "The third form of the quadrilateral area coordinate method (QACM-III): theory, application, and scheme of composite coordinate interpolation", Finite Elem. Anal. Des., 46(10), 805-818. https://doi.org/10.1016/j.finel.2010.04.008
- Long, Z.F., Li, J.X., Cen, S. and Long, Y.Q. (1999), "Some basic formulae for area coordinates used in quadrilateral elements", Commun. Numer. Meth. Eng., 15(12), 841-852. https://doi.org/10.1002/(SICI)1099-0887(199912)15:12<841::AID-CNM290>3.0.CO;2-A
- Moes, N., Dolbow, J. and Belytschko, T. (1999), "A finite element method for crack growth without remeshing", Int. J. Numer. Meth. Eng., 46(1), 131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
- Patnaik, S.N. (1973), "An integrated force method for discrete analysis", Int. J. Numer. Meth. Eng., 6(2), 237-251. https://doi.org/10.1002/nme.1620060209
- Patnaik, S.N. (1986), "The integrated force method versus thestandard force method", Comput. Struct., 22(2), 151-163. https://doi.org/10.1016/0045-7949(86)90061-1
- Patnaik, S.N. (1986), "The variational energy formulation for the integrated force method", AIAA J., 24(1), 129-136. https://doi.org/10.2514/3.9232
- Patnaik, S.N., Berke, L. and Gallagher, R.H. (1991), "Integrated force method versus displacement method for finite element analysis", Comput. Struct., 38(4), 377-407. https://doi.org/10.1016/0045-7949(91)90037-M
- Peng, Y.J. and Liu, Y.H. (2009), "Base force element method (BFEM) of complementary energy principle for large rotation problems". Acta Mechanica Sinica, 25(4), 507-515. https://doi.org/10.1007/s10409-009-0234-x
- Peng, Y.J., Dong, Z.L., Peng, B. and Liu, Y.H. (2011), "Base force element method(BFEM) on potential energy principle for elasticity problems", Int. J. Mech. Mech. Des., 7(3), 245-251. https://doi.org/10.1007/s10999-011-9162-6
- Peng, Y.J., Guo, Q., Zhang, Z.F. and Shan, Y.Y. (2015), "Application of base force element method on complement energy principle to rock mechanics problems", Math. Prob. Eng., 25(4), 1-16.
- Peng, Y.J., Zhang, L.J., Pu, J.W. and Guo, Q. (2014), "A two-dimensional base force element method using concave polygonal mesh", Eng. Anal. Bound. Elem., 42, 45-50. https://doi.org/10.1016/j.enganabound.2013.09.002
- Peng, Y.J., Zong, N.N., Zhang, L.J. and Pu, J.W. (2014), "Application of 2D base force element method with complementary energy principle for arbitrary meshes", Eng. Comput., 31(4), 1-15.
- Pian, T.H.H. (1964),"Derivation of element stiffness matrices by assumed stress distributions", AIAA J., 2(7), 1333-1336. https://doi.org/10.2514/3.2546
- Pian, T.H.H. and Chen, D.P. (1982), "Alternative ways for formulation of hybrid stress elements", Int. J. Numer. Meth. Eng., 18(11), 1679-1684. https://doi.org/10.1002/nme.1620181107
- Pian, T.H.H. and Sumihara, K. (1984), "Rational approach for assumed stress finite elements", Int. J. Numer. Meth. Eng., 20(9), 1685-1695. https://doi.org/10.1002/nme.1620200911
- Piltner, R. and Taylor, R.L. (1995), "A quadrilateral mixed finite element with two enhanced strain modes" Int. J. Numer. Meth. Eng., 38(11), 1783-1808. https://doi.org/10.1002/nme.1620381102
- Rajendran, S. and Liew, K.M. (2003), "A novel unsymmetric 8node plane element immune to mesh distortion under a quadratic displacement field", Int. J. Numer. Meth. Eng., 58(11), 1713-1748. https://doi.org/10.1002/nme.836
- Santos, H.A.F.A. and Paulo, C.A. (2011), "On a pure complementary energy principle and a force-based finite element formulation for nonlinear elastic cables", Int. J. Nonlin. Mech., 46(2), 395-406. https://doi.org/10.1016/j.ijnonlinmec.2010.10.005
- Santos, H.A.F.A. (2011), "Complementary-energy methods for geometrically non-linear structural models: an overview and recent developments in the analysis of frames", Arch. Comput. Meth. Eng., 18(4), 405-440. https://doi.org/10.1007/s11831-011-9065-6
- Santos, H.A.F.A. (2015), "A novel updated Lagrangian complementary energy-based formulation for the elastica problem: force-based finite element model", Acta Mechanica, 226(4), 1133-1151. https://doi.org/10.1007/s00707-014-1237-7
- Santos, H.A.F.A. and Moitinho de Almeida, J.P. (2010), "Equilibrium-based finite element formulation for the geometrically exact analysis of planar framed structures", J. Eng. Mech., 136(12), 1474-1490. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000190
- Santos, H.A.F.A. and Moitinho de Almeida, J.P. (2014), "A family of Piola-Kirchhoff hybrid stress finite elements for two-dimensional linear elasticity", Finite Elem. Anal. Des., 85, 33-49. https://doi.org/10.1016/j.finel.2014.03.005
- Simo J.C. and Hughes, T.J.R. (1986), "On the variational foundations of assumed strain methods", J. Appl. Mech., 53(1), 51-54. https://doi.org/10.1115/1.3171737
- Tang, L.M., Chen, W.J. and Liu, Y.G. (1984), "Formulation of quasi-conforming element and Hu-Washizu principle", Comput. Struct., 19(1-2), 247-250. https://doi.org/10.1016/0045-7949(84)90224-4
- Wilson E.L., Tayler R.L., Doherty W.P. and Ghaboussi J.(1973), Incompatible Displacement Models, Numerical and Computational Methods in Structural Mechanics, Eds. Fenves, S.J. et al., Academic Press, New York.
- Zhang, C.H., Wang, D.D., Zhang, J.L., Feng, W. and Huang, Q. (2007), "On the equivalence of various hybrid finite elements and a new orthogonalization method for explicit element stiffness formulation", Finite Elem. Anal. Des., 43(4), 321-332. https://doi.org/10.1016/j.finel.2006.11.002
- Zienkiewicz, R.L. and Taylorand, O.C. (1979), "Complementary energy with penalty functions in finite element analysis", Energy Methods in Finite Element Analysis, (A 79-53076 24-39), Chichester, Sussex, England, Wiley-Interscience.
Cited by
- Mesomechanical properties of concrete with different shapes and replacement ratios of recycled aggregate based on base force element method vol.20, pp.4, 2019, https://doi.org/10.1002/suco.201800261
- Finite elements for problems of the elasticity theory with the discontinuous stress approximation vol.224, pp.None, 2017, https://doi.org/10.1051/e3sconf/202022402012