References
- Z. l. Messaoudani, F. Rigas, M. D. B. Hamid, and C. R. C. Hassan, Hazards, safety and knowledge gaps on hydrogen transmission via natural gas grid: A critical review, Int. J. Hydrogen Energy, 41, 17511-17525 (2016). https://doi.org/10.1016/j.ijhydene.2016.07.171
-
F. J. Lopez-Tenllado, J. Hidalgo-Carrillo, V. Montes, A. Marinas, F. J. Urbano, J. M. Marinas, L. Ilieva, T. Tabakova, and F. Reid, A comparative study of hydrogen photocatalytic production from-glycerol and propan-2-ol on M/
$TiO_2$ systems (M = Au, Pt, Pd), Catal. Today, 280, 58-64 (2017). https://doi.org/10.1016/j.cattod.2016.05.009 -
F. Ahmadi, M. Haghighi, and H. Ajamein, Sonochemically coprecipitation synthesis of CuO/ZnO/
$ZrO_2$ /$Al_2O_3$ nanocatalyst for fuel cell grade hydrogen production via steam methanol reforming, J. Mol. Catal. A, 421, 196-208 (2016). https://doi.org/10.1016/j.molcata.2016.05.027 -
A. Kaftan, M. Kusche, M. Laurin, P. Wasserscheid, and J. Libuda, KOH-promoted Pt/
$Al_2O_3$ catalysts for water gas shift and methanol steam reforming: An operando DRIFTS-MS study, Appl. Catal. B, 201, 169-181 (2017). https://doi.org/10.1016/j.apcatb.2016.08.016 -
X. Huang, C. Ji, C. Wang, F. Xiao, N. Zhao, N. Sun, W. Wei, and Y. Sun, Ordered mesoporous CoO-NiO-
$Al_2O_3$ bimetallic catalysts with dual confinement effects for$CO_2$ reforming of$CH_4$ , Catal. Today, 281, 241-249 (2017). https://doi.org/10.1016/j.cattod.2016.02.064 - P. Nikolaidis and A. Poullikkas, A comparative overview of hydrogen production processes, Renew. Sustain. Energy Rev., 67, 597-611 (2017). https://doi.org/10.1016/j.rser.2016.09.044
- A. R. Aparna, V. Brahmajirao, and T. V. Karthikeyan, Review on synthesis and characterization of gallium phosphide, Procedia Mater. Sci., 6, 1650-1657 (2014). https://doi.org/10.1016/j.mspro.2014.07.150
- F. Vaquero, R. M. Navarro, and J. L. G. Fierro, Evolution of the nanostructure of CdS using solvothermal synthesis at different temperature and its influence on the photoactivity for hydrogen production, Int. J. Hydrogen Energy, 41, 11558-11567 (2016). https://doi.org/10.1016/j.ijhydene.2015.12.039
-
X. Wang, S. Zhang, Y. Xie, H. Wang, H. Yu, Y. Shen, Z. Li, S. Zhang, and F. Peng, Branched hydrogenated
$TiO_2$ nanorod arrays for improving photocatalytic hydrogen evolution performance under simulated solar light, Int. J. Hydrogen Energy, 41, 20192-20197 (2016). https://doi.org/10.1016/j.ijhydene.2016.09.029 -
A. Perez-Larios, R. Lopez, A. Hernandez-Gordillo, F. Tzompantzi, R. Gomez, and L. M. Torres-Guerra, Improved hydrogen production from water splitting using
$TiO_2$ -ZnO mixed oxides photocatalysts, Fuel, 100, 139-143 (2012). https://doi.org/10.1016/j.fuel.2012.02.026 -
K. Yu, C. Zhang, Y. Chang, Y. Feng, Z. Yang, T. Yang, L.-L. Lou, and S. Liu, Novel three-dimensionally ordered macroporous
$SrTiO_3$ photocatalysts with remarkably enhanced hydrogen production performance, Appl. Catal. B, 200, 514-520 (2017). https://doi.org/10.1016/j.apcatb.2016.07.049 -
M.-Y. Xie, K.-Y. Su, X.-Y. Peng, R.-J. Wu, M. Chavali, and W.-C. Chang, Hydrogen production by photocatalytic water-splitting on Pt-doped
$TiO_2$ -ZnO under visible light, J. Taiwan Inst. Chem. Eng., 70, 161-167 (2017). https://doi.org/10.1016/j.jtice.2016.10.034 - M. J. Sampaio, J. W. L. Oliveira, C. I. L. Sombrio, D. L. Baptista, S. R. Teixeira, S. A. C. Carabineiro, C. G. Silva, and J. L. Faria, Photocatalytic performance of Au/ZnO nanocatalysts for hydrogen production from ethanol, Appl. Catal. A, 518, 198-205 (2016). https://doi.org/10.1016/j.apcata.2015.10.013
-
T. Di, B. Zhu, J. Zhang, B. Cheng, and J. Yu, Enhanced photocatalytic
$H_2$ production on CdS nanorod using cobalt-phosphate as oxidation cocatalyst, Appl. Surf. Sci., 389, 775-782 (2016). https://doi.org/10.1016/j.apsusc.2016.08.002 - S. Kuriakose, B. Satpati, and S. Mohaptatra, Enhanced photocatalytic of Co doped ZnO nanorodisks and nanorods prepared by a facile wet chemical method, Phys. Chem. Chem. Phys., 16, 12741-12749 (2014). https://doi.org/10.1039/c4cp01315h
-
M.-S. Park and M. Kang, The preparation of the anatase and rutile forms of Ag-
$TiO_2$ and hydrogen production from methanol/water decomposition, Mater. Lett., 62, 183-187 (2008). https://doi.org/10.1016/j.matlet.2007.04.105 - S. Kuriakose, V. Choudhary, B. Satpati, and S. Mohapatra, Enhanced photocatalytic activity of Ag-ZnO hybrid plasmonic nanostructures prepared by a facile wet chemical method, Beilstein J. Nanotechnol., 5, 639-650 (2014). https://doi.org/10.3762/bjnano.5.75
- Y. Zheng, C. Chen, Y. Zhan, X. Lin, Q. Zheng, K. Wei, and J. Zhu, Photocatalytic activity of Ag/ZnO heterostructure nano-catalyst: Correlation between structure and property, J. Phys. Chem. C, 122, 10773-10777 (2008).
-
C.-J. Chang, Z. Lee, K.-W. Chu, and Y.-H. Wei,
$CoFe_2O_4@ZnS$ core-shell spheres as magnetically recyclable photocatalysts for hydrogen production, J. Taiwan Inst. Chem. Eng., 66, 386-393 (2016). https://doi.org/10.1016/j.jtice.2016.06.033 - Y. Zhang, Y. Hu, H. Zeng, L. Zhong, K. Liu, H. Cao, W. Li, and H. Yan, Silicon carbide recovered form photovoltaic industry waste as photocatalysts for hydrogen production, J. Hazard. Mater., 329, 22-29 (2017). https://doi.org/10.1016/j.jhazmat.2017.01.023
-
Q. Yang, P. Peng, and Z. Xiang, Covalent organic polymer modified
$TiO_2$ nanosheets as highly efficient photocatalysts for hydrogen generation, Chem. Eng. Sci., 162, 33-40 (2017). https://doi.org/10.1016/j.ces.2016.12.071 -
H. Lee, Y. Park, and M. Kang, Synthesis of characterization of
$Zn_xTi_yS$ and its photocatalytic activity for hydrogen production from methanol/water photo-splitting, J. Ind. Eng. Chem., 19, 1162-1168 (2013). https://doi.org/10.1016/j.jiec.2012.12.013 - N. Chouhan, R. Ameta, R. K. Meena, N. Mandawat, and R. Ghildiyal, Visible light harvesting Pt/CdS/Co-doped ZnO nanorods molecular device for hydrogen generation, Int. J. Hydrogen Energy, 41, 2298-2306 (2016). https://doi.org/10.1016/j.ijhydene.2015.11.019
-
P. A. Mangrulkar, A. A. Chilkalwar, A. V. Kotkondawar, N. R. Manwar, P. S. Antony, G. Hippargi, N. Labhsetwar, M. C. Trachtenberg, and S. S Rayalu, Plasmonic nanostructured Zn/ZnO composite enhances carbonic anhydrase driven photocatalytic hydrogen generation, J.
$CO_2$ Util., 17, 207-212 (2017). https://doi.org/10.1016/j.jcou.2016.11.013 - S. N. H. M. Daud, C. Haw, W. Chiu, Z. Aspanut, M. Chia, N. H. Khanis, P. Khiew, and M. A. A. Hamid, ZnO nanonails: Organometallic synthesis, self-assembly and enhanced hydrogen gas production, Mater. Sci. Semicond. Process., 56, 228-237 (2016). https://doi.org/10.1016/j.mssp.2016.08.021
-
A. Tumuluri, K. L. Naidu, and K. C. J. Raju, Band gap determination using Tauc's plot for
$LiNbO_3$ thin films, Int. J. Chem. Tech. Res., 6, 3353-3356 (2014). - G. Varughese, K. T. Usha, and A. S. Kumar, Characterisation and band gap energy of wurtzite ZnO:La nanocrystalites, Int. J. Latest Res. Sci. Technol., 3, 133-136 (2014).