DOI QR코드

DOI QR Code

Synthesis and Properties of Cholesteric Liquid Crystalline Polymers with Isosorbide Group

아이소소바이드기를 갖는 콜레스테릭 액정고분자의 합성 및 성질

  • Gu, Su-Jin (Division of Advanced Materials Science and Engineering, Kongju National University) ;
  • Yoon, Doo-Soo (Dept. of Bioenvironmental & Chemical Engineering, Chosun College of Science & Technology) ;
  • Bang, Moon-Soo (Division of Advanced Materials Science and Engineering, Kongju National University)
  • 구수진 (공주대학교 신소재공학부) ;
  • 윤두수 (조선이공대학교 생명환경화공과) ;
  • 방문수 (공주대학교 신소재공학부)
  • Received : 2017.01.13
  • Accepted : 2017.02.28
  • Published : 2017.04.10

Abstract

We synthesized liquid crystalline polymers containing isosorbide group as a cholesteric derivative and methylene group for controlling the transition temperature to the liquid crystal phase. Effects of the concentration of the isosorbide group and the position of the methylene group on the properties of the liquid crystalline polymer were investigated. Among all the synthesized polymers, polymers (MnHI-x) with a methylene group in the main chain showed higher melting transition temperature and thermal stability than those (SnBI-x) with a methylene group in the side chain. All the synthesized polymers showed an enantiotropic liquid crystal phase. The polymers having 10 mol% isosorbide as a cholesteric liquid crystal phase derivative showed nematic phase, and those having 20 mol% or more isosorbide showed a cholesteric or chiral smectic phase. Thus, we can conclude that the isosorbide group plays a role as a cholesteric liquid crystal phase derivative.

본 연구에서는 콜레스테릭 액정상 유도를 위하여 아이소소바이드기를 가지고 있으며, 액정상 전이온도의 조절을 위하여 메틸렌기를 포함하고 있는 액정고분자들을 합성하였고, 합성된 액정고분자 내의 아이소소바이드기의 함량과 메틸렌기의 위치가 액정고분자의 물성에 미치는 영향이 조사되었다. 합성된 모든 고분자들 중, 주사슬에 메틸렌 유연격자를 가진 고분자(MnHI-x)가 곁사슬에 메틸렌 유연격자를 가진 고분자(SnBI-x)들보다 더 높은 용융전이온도와 열안정성을 나타내었다. 합성된 모든 고분자들은 양방성 액정상을 나타냈으며, 콜레스테릭 액정상 유도체로써 아이소소바이드 함량이 10몰%인 고분자는 네마틱상을, 20몰% 이상의 고분자들은 콜레스테릭 액정상 또는 카이랄 스멕틱상을 형성하였다. 이로써, 아이소소바이드기가 콜레스테릭 액정상 유도체로써의 역할을 하였음을 알 수 있다.

Keywords

References

  1. A. Seeboth, D. Loetzsch, and R. Ruhmann, Piezochromic polymer materials displaying pressure changes in bar-ranges, Am. J. Mater. Sci., 1, 139-142 (2012). https://doi.org/10.5923/j.materials.20110102.23
  2. W. E. Lee, C. L. Lee, T. Sakaguchi, M. Fujiki, and G. Kwak, Piezochromic fluorescence in liquid crystalline conjugated polymer, Chem. Commun., 47, 3526-3528 (2011). https://doi.org/10.1039/c0cc04811a
  3. B. Y. Woo, D. J. Min, H. S. Baek, S. H. Kim, J. Y. Hwang, Y. H. Park, J. H. Lee, and S. S. Shin, A study of the stability and moisturizing effect of non-animal cholesteric liquid crytal, J. Soc. Cosmet. Sci. Korea, 40, 141-153 (2014).
  4. V. A. Mallia and N. Tamaoki, Design of chiral dimesogens containing cholesteryl groups; Formation of new molecular organizations and their application to molecular photonics, Chem. Soc. Rev., 33, 76-84 (2004). https://doi.org/10.1039/b106617j
  5. J. Lub, W. P. M. Nijssen, R. T. Wegh, J. P. A. Vogels, and A. Ferrer, Synthesis and properties of photoisomerizable derivatives of isosorbide and their use in cholesteric filters, Adv. Funct. Mater., 15, 1961-1972 (2005). https://doi.org/10.1002/adfm.200500127
  6. Y. Kim, M. Wada, and N. Tamaoki, Dicholesteryl icosanedioate as a glass-forming cholesteric liquid crystal: Properties, additive effects and application in color recording, J. Mater. Chem. C, 2, 1921-1926 (2014). https://doi.org/10.1039/c3tc32179g
  7. F. Fenouillot, A. Rousseau, G. Colomines, R. Saint-Loup, and J. P. Pascault, Polymers from renewable 1,4:3,6-dianhydrohexitols (isosorbide, isomannide and isoidide): A review, Prog. Polym. Sci., 35, 578-622 (2010). https://doi.org/10.1016/j.progpolymsci.2009.10.001
  8. C. Lavilla and S. M. Guerra, Sugar-based aromatic copolyesters; A comparative study regarding isosorbide and diacetalized alditols as sustainable comonomers, Green Chem., 15, 144-151 (2013). https://doi.org/10.1039/C2GC36480H
  9. E. C. Varkey and K. Sreekumar, Isosorbide based chiral polyurethanes: Optical and thermal studies, J. Mater. Sci., 45, 1912-1920 (2010). https://doi.org/10.1007/s10853-009-4177-1
  10. T. Krawinkel and H. R. Kricheldorf, New polymer syntheses. 95. Photosetting cholesteric polyesters derived from 4-hydroxycinnamic acid and isosorbide, Macromolecules, 31, 1016-1023 (1998). https://doi.org/10.1021/ma971027e
  11. H. R. Kricheldorf, S. Chatti, G. Schwarz, and R. P. Kruger, Macrocycles 27: Cyclic aliphatic polyesters of isosorbide, J. Polym. Sci. A, 41, 3414-3424 (2003). https://doi.org/10.1002/pola.10933
  12. N. N. Chavan, Synthesis and characterization of cholesteric thermotropic liquid crystalline polyester base on isosorbide, Mater. Sci. Appl., 2, 1520-1527 (2011).
  13. H. Kim, E. J. Park, S. Kim, M. S. Lee, I. S. Kee, and S. Jung, Improvement of bending recovery of polyester film via physical aging treatment, Polymer (Korea), 39, 593-600 (2015). https://doi.org/10.7317/pk.2015.39.4.593
  14. M. S. Bang, D. S. Yoon, and J. K. Choi, Synthesis and properties of semi-flexible aromatic polyesters containing pentamethylene group in main chain, Elastom. Compos., 44, 436-441 (2009).
  15. A. C. Griffin and S. J. Havens, Mesogenic polymers. III. Thermal properties and synthesis of three homologous series of thermotropic liquid crystalline "Backbone" polyesters, J. Polym. Sci. B, 19, 951-969 (1981).
  16. J. H. Chang, S. M. Lee, N. J. Park, B. W. Jo, and M. S. Bang, Blends of new thermotreopic LCP having alkoxy side-groups with PBT, Polymer (Korea), 18, 966-975 (1994).
  17. M. Ballauff, Rigid rod polymers having flexible side chains, 1. Thermotropic poly (1,4-phenylene 2,5-dialkoxyterephthalate)s, Makromol. Chem., Rapid Commun., 7, 407-414 (1986). https://doi.org/10.1002/marc.1986.030070615
  18. F. Higashi, T. Mashimo, and I. Takahashi, Preparation of aromatic polyesters by direct polycondenastion with thionyl chloride in pyridine, J. Polym. Sci. Polym. Chem. Ed., 24, 91-102 (1986).
  19. S. Antoun, R. W. Lenz, and J. I. Jin, Liquid crystal polymers. IV. Thermotropic polyesters with flexible spacers in the main chain, J. Polym. Sci. Polym. Chem. Ed., 19, 1901-1920 (1981). https://doi.org/10.1002/pol.1981.170190804