References
- A. E. Oberth, Principles of Solid Propellant Development, Chemical Propulsion Information Agency, MD, USA (1987).
- A. Davenas, Development of modern solid propellant, J. Propul. Power, 19, 1108-1128 (2003). https://doi.org/10.2514/2.6947
- F. Q. Zhao, P. Chen, and S.-W. Li, Effect of ballistic modifiers on thermal decomposition characteristics of RDX/AP/HTPB propellant, Thermochim. Acta, 416, 75-78 (2004). https://doi.org/10.1016/j.tca.2003.11.034
- Y. J. Yim, The tendency in solid propellant technology for missiles, J. Korean Soc. Propul. Eng., 9, 112-119 (2005).
-
Y. Zhang, X. Liu, J. Nie, L. Yu, Y. Zhong, and C. Huang, Improve the catalytic activity of
${\alpha}$ -$Fe_2O_3$ particles in decomposition of ammonium perchlorate by coating amorphous carbon on their surface, J. Solid State Chem., 184, 387-390 (2011). https://doi.org/10.1016/j.jssc.2010.12.004 - Z. Zhou, S. Tian, D. Zeng, G. Tang, and C. Xie, MOX (M = Zn, Co, Fe)/AP shell-core nanocomposites for self-catalytical decomposition of ammonium perchlorate, J. Alloy Compd., 513, 213-219 (2012). https://doi.org/10.1016/j.jallcom.2011.10.021
- C. Wu, K. Sullivan, S. Chowdhury, G. Jian, L. Zhou, and M. R. Zachariah, Encapsulation of perchlorate salts within metal oxides for application as nanoenergetic oxidizers, Adv. Funct. Mater., 22, 78-85 (2012). https://doi.org/10.1002/adfm.201100479
- A. Davenas, Solid Rocket Propulsion Technology, Pergamon Press, NY, USA (1993).
- R. J. Jacob, B. Wei, and M. R. Zachariah, Quantifying the enhanced combustion characteristics of electrospray assembled aluminum mesoparticles, Combust. Flame, 167, 472-480 (2016). https://doi.org/10.1016/j.combustflame.2015.09.032
- E.-A. Lee, H.-M. Shim, J.-K. Kim, H.-S. Kim, and K.-K. Koo, Preparation of spherical energetic composites by crystallization/agglomeration and their thermal decomposition characteristic, Appl. Chem. Eng., 27, 158-164 (2016). https://doi.org/10.14478/ace.2015.1125
- H.-M. Shim, J.-K. Kim, H.-S. Kim, and K.-K. Koo, Production of the spherical nano-Al/AP composites by drowning-out/agglomeration and their solid-reaction kinetics, Ind. Eng. Chem. Res., 55, 10227-10234 (2016). https://doi.org/10.1021/acs.iecr.6b01558
- S. Vyazovkin and C. A. Wight, Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data, Thermochim. Acta., 340-341, 53-68 (1999). https://doi.org/10.1016/S0040-6031(99)00253-1
- B. Jankovic, Kinetic analysis of the nonisothermal decomposition of potassium metabisulfite using the model-fitting and isoconversional (model-free) methods, Chem. Eng. J., 139, 128-135 (2008). https://doi.org/10.1016/j.cej.2007.07.085
- V. V. Boldyrev, Thermal decomposition of ammonium perchlorate, Thermochim. Acta, 443, 1-36 (2006). https://doi.org/10.1016/j.tca.2005.11.038
- L. L. Bircumshaw and B. H. Newman, The thermal decomposition of ammonium perchlorate. I. Introduction, experimental, analysis of gaseous products, and thermal decomposition experiments, Proc. R. Soc. London, A 227, 115-132 (1954). https://doi.org/10.1098/rspa.1954.0284
- S. Vyazovkin and C. A. Wight, Kinetics of thermal decomposition of cubic ammonium perchlorate, Chem. Mater., 11, 3386-3393 (1999). https://doi.org/10.1021/cm9904382
- A. Khawam and D. R. Flanagan, Solid-state kinetic models: Basics and mathematical fundamentals, J. Phys. Chem. B, 110, 17315-17328 (2006). https://doi.org/10.1021/jp062746a
- J. M. Pakulak Jr. and E. Kuletz, Thermal Analysis Studies on Candidate Solid JPL Propellants for Heat Sterilizable Motors, NWC TP 4285, Defense Technical Information Center, USA (1970).
- A. K. Galwey and M. E. Brown, Application of the Arrhenius equation to solid state kinetics: Can this be justified?, Thermochim. Acta, 386, 91-98 (2002). https://doi.org/10.1016/S0040-6031(01)00769-9