DOI QR코드

DOI QR Code

Preparation of Al/RDX/AP Energetic Composites by Drowning-out/Agglomeration and Their Thermal Decomposition Characteristics

결정화/응집에 의한 구형 Al/RDX/AP 에너지 복합체 제조 및 그 열분해 특성

  • Lee, Jeong-Hwan (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Shim, Hong-Min (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Kim, Jae-Kyeong (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Kim, Hyoun-Soo (Agency for Defense Development) ;
  • Koo, Kee-Kahb (Department of Chemical and Biomolecular Engineering, Sogang University)
  • 이정환 (서강대학교 화공생명공학과) ;
  • 심홍민 (서강대학교 화공생명공학과) ;
  • 김재경 (서강대학교 화공생명공학과) ;
  • 김현수 (국방과학연구소) ;
  • 구기갑 (서강대학교 화공생명공학과)
  • Received : 2017.01.09
  • Accepted : 2017.02.05
  • Published : 2017.04.10

Abstract

The spherical Al/RDX/AP composites with an average size of $550{\mu}m$ were successfully prepared by drowning-out/agglomeration (D/A) process. The surface morphology and dispersion of Al particles of those composites were investigated using SEM and EDS (energy dispersive spectrometry). As a result of thermal analysis, the onset temperature of thermal decomposition of the Al/RDX/AP composites by the D/A process was found to decrease about $50^{\circ}C$ and their thermal stability was shown to be relatively enhanced due to the increase of activation energy compared to those of using the physical mixing method. In the first decomposition region of AP, Prout-Tompkins model was shown to describe well the thermal decomposition of both composites by the physical mixing and D/A process. On the other hand, in the second decomposition region of AP, the decomposition mechanisms of composites by the physical mixing and D/A process were explained by the zero-order and contracting volume model, respectively.

결정화/응집(drowning-out/agglomeration, D/A) 공정을 이용하여 평균 입도 $550{\mu}m$인 구형 Al/RDX/AP 에너지 복합체를 제조하였다. SEM과 X-선 분광분석을 이용해 복합체의 표면 구조와 Al의 분포를 분석하였다. 열분석 결과 D/A 공정에 의해 제조된 Al/RDX/AP 복합체는 물리적 혼합에 의한 복합체와 비교하여 분해 개시 온도가 약 $50^{\circ}C$ 정도 낮아졌으며, 동시에 활성화 에너지의 증가에 의해 열적 안정성도 상승하는 것으로 확인되었다. AP의 1차 분해 구간에서는 물리적 혼합과 D/A 공정에 의한 복합체 모두 Prout-Tompkins 모델에 의해 잘 모사되었다. 그러나 AP의 2차 분해 구간에서는 물리적 혼합에 의해 제조된 복합체는 zero-order 모델로 해석되는 반면, D/A 공정에 의해 제조된 복합체는 contracting volume 모델로 해석됨을 알 수 있었다.

Keywords

References

  1. A. E. Oberth, Principles of Solid Propellant Development, Chemical Propulsion Information Agency, MD, USA (1987).
  2. A. Davenas, Development of modern solid propellant, J. Propul. Power, 19, 1108-1128 (2003). https://doi.org/10.2514/2.6947
  3. F. Q. Zhao, P. Chen, and S.-W. Li, Effect of ballistic modifiers on thermal decomposition characteristics of RDX/AP/HTPB propellant, Thermochim. Acta, 416, 75-78 (2004). https://doi.org/10.1016/j.tca.2003.11.034
  4. Y. J. Yim, The tendency in solid propellant technology for missiles, J. Korean Soc. Propul. Eng., 9, 112-119 (2005).
  5. Y. Zhang, X. Liu, J. Nie, L. Yu, Y. Zhong, and C. Huang, Improve the catalytic activity of ${\alpha}$-$Fe_2O_3$ particles in decomposition of ammonium perchlorate by coating amorphous carbon on their surface, J. Solid State Chem., 184, 387-390 (2011). https://doi.org/10.1016/j.jssc.2010.12.004
  6. Z. Zhou, S. Tian, D. Zeng, G. Tang, and C. Xie, MOX (M = Zn, Co, Fe)/AP shell-core nanocomposites for self-catalytical decomposition of ammonium perchlorate, J. Alloy Compd., 513, 213-219 (2012). https://doi.org/10.1016/j.jallcom.2011.10.021
  7. C. Wu, K. Sullivan, S. Chowdhury, G. Jian, L. Zhou, and M. R. Zachariah, Encapsulation of perchlorate salts within metal oxides for application as nanoenergetic oxidizers, Adv. Funct. Mater., 22, 78-85 (2012). https://doi.org/10.1002/adfm.201100479
  8. A. Davenas, Solid Rocket Propulsion Technology, Pergamon Press, NY, USA (1993).
  9. R. J. Jacob, B. Wei, and M. R. Zachariah, Quantifying the enhanced combustion characteristics of electrospray assembled aluminum mesoparticles, Combust. Flame, 167, 472-480 (2016). https://doi.org/10.1016/j.combustflame.2015.09.032
  10. E.-A. Lee, H.-M. Shim, J.-K. Kim, H.-S. Kim, and K.-K. Koo, Preparation of spherical energetic composites by crystallization/agglomeration and their thermal decomposition characteristic, Appl. Chem. Eng., 27, 158-164 (2016). https://doi.org/10.14478/ace.2015.1125
  11. H.-M. Shim, J.-K. Kim, H.-S. Kim, and K.-K. Koo, Production of the spherical nano-Al/AP composites by drowning-out/agglomeration and their solid-reaction kinetics, Ind. Eng. Chem. Res., 55, 10227-10234 (2016). https://doi.org/10.1021/acs.iecr.6b01558
  12. S. Vyazovkin and C. A. Wight, Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data, Thermochim. Acta., 340-341, 53-68 (1999). https://doi.org/10.1016/S0040-6031(99)00253-1
  13. B. Jankovic, Kinetic analysis of the nonisothermal decomposition of potassium metabisulfite using the model-fitting and isoconversional (model-free) methods, Chem. Eng. J., 139, 128-135 (2008). https://doi.org/10.1016/j.cej.2007.07.085
  14. V. V. Boldyrev, Thermal decomposition of ammonium perchlorate, Thermochim. Acta, 443, 1-36 (2006). https://doi.org/10.1016/j.tca.2005.11.038
  15. L. L. Bircumshaw and B. H. Newman, The thermal decomposition of ammonium perchlorate. I. Introduction, experimental, analysis of gaseous products, and thermal decomposition experiments, Proc. R. Soc. London, A 227, 115-132 (1954). https://doi.org/10.1098/rspa.1954.0284
  16. S. Vyazovkin and C. A. Wight, Kinetics of thermal decomposition of cubic ammonium perchlorate, Chem. Mater., 11, 3386-3393 (1999). https://doi.org/10.1021/cm9904382
  17. A. Khawam and D. R. Flanagan, Solid-state kinetic models: Basics and mathematical fundamentals, J. Phys. Chem. B, 110, 17315-17328 (2006). https://doi.org/10.1021/jp062746a
  18. J. M. Pakulak Jr. and E. Kuletz, Thermal Analysis Studies on Candidate Solid JPL Propellants for Heat Sterilizable Motors, NWC TP 4285, Defense Technical Information Center, USA (1970).
  19. A. K. Galwey and M. E. Brown, Application of the Arrhenius equation to solid state kinetics: Can this be justified?, Thermochim. Acta, 386, 91-98 (2002). https://doi.org/10.1016/S0040-6031(01)00769-9