DOI QR코드

DOI QR Code

Effect of Fatty Acid on the Membrane Fluidity of Liposomes

지방산 첨가가 리포좀 유동성에 미치는 영향에 관한 연구

  • Lee, JinSun (Dept. of Chemical and Biochemical Eng., Dongguk Univ.-Seoul) ;
  • Chi, Gyeong-Yup (Daegu Hanny University) ;
  • Lim, JongChoo (Dept. of Chemical and Biochemical Eng., Dongguk Univ.-Seoul)
  • 이진선 (동국대학교-서울 공과대학 화공생물공학과) ;
  • 지경엽 (대구한의대학교 한방산업대학 바이오산업융합학부) ;
  • 임종주 (동국대학교-서울 공과대학 화공생물공학과)
  • Received : 2016.12.19
  • Accepted : 2017.02.09
  • Published : 2017.04.10

Abstract

In the present work, the interaction of fatty acid with vesicle membrane of phospholipids was investigated using 3 different kinds of fatty acids such as stearic acid (SA), oleic acid (OA) and linoleic acid (LA). Basically, the same trend has been found in 3 fatty acid systems. The addition of fatty acid produced a close packing of liposome due to the penetration of fatty acid molecules into liposome vesicles, which resulted in a decrease in size and an increase in zeta potential of liposome. However, excessive addition of fatty acid produced a transition from liposomes to aggregates of lipid particles having polymorphic structure. The membrane fluidity, characterized by measuring membrane deformability and fluorescence anisotropy ratio of liposomes, was in good agreement with measurement results of transmission electron microscopy (TEM) and particle size. The minimum size and closest packing of liposome with SA, OA and LA were found when the molar ratios of fatty acid to lecithin were 0.70, 0.50, and 0.25 respectively.

본 연구에서는 스테아르산(SA), 올레산(OA), 리놀레산(LA) 등의 지방산이 지질 소포체 막과의 상호 작용에 미치는 영향에 관하여 살펴보았다. 이를 위하여 지방산 종류 및 농도 변화에 따른 리포좀 평균 입자 크기 및 제타 전위, 리포좀 막의 deformability, fluorescence anisotropy ratio 등을 측정하고 TEM 관찰을 통하여 지방산 첨가가 리포좀 막의 유동성 변화에 미치는 역할에 관하여 살펴보았다. 기본적으로 SA, OA, LA 등의 지방산 첨가는 동일한 경향을 나타내었다. 즉, 지방산을 첨가함에 따라 리포좀이 보다 치밀한 패킹을 갖게 되어서 리포좀의 크기는 감소하고 제타 전위 값은 증가하였으나, 지방산의 과도한 첨가는 리포좀에서 다형(polymorphic) 구조를 가지는 지질 입자 응집체로의 전이를 일으켰다. SA, OA 및 LA 지방산 시스템에서의 최소 리포좀 크기와 가장 치밀한 리포좀 패킹은 레시틴 대비 지방산의 몰 비율이 각각 0.70, 0.50, 0.25인 조건에서 관찰되었으며, 리포좀 막의 deformability와 fluorescence anisotropy ratio 측정에 의한 리포좀 막의 유동성 측정 결과는 TEM 및 입자 크기 측정 결과와 일치함을 알 수 있었다.

Keywords

References

  1. J. Marcelino, J. L. F. C. Lima, S. Reis, and C. Matos, Assessing the effects of surfactants on the physical properties of liposome membranes, Chem. Phys. Lipids, 146, 94-103 (2007). https://doi.org/10.1016/j.chemphyslip.2006.12.008
  2. T. Inoue, K. Miyakawa, and R. Shimozawa, Interaction of surfactants with vesicle membrane of dipalmitoylphosphatidylcholine. Effect on gel-to-liquid-crystalline phase transition of lipid bilayer, Chem. Phys. Lipids, 42, 261-270 (1986). https://doi.org/10.1016/0009-3084(86)90085-X
  3. T. Inoue, T. Iwanaga, K. Fukushima, R. Shimozawa, and Y. Suezaki, Interaction of surfactants with bilayer of negatively charged lipid: Effect on gel-to-liquid crystalline phase transition of dilauroylphosphatidic acid vesicle membrane, Chem. Phys. Lipids, 48, 189-196 (1988). https://doi.org/10.1016/0009-3084(88)90089-8
  4. S. E. Schullery, T. A. Seder, D. A. Weinstein, and D. A. Bryant, Differential thermal analysis of dipalmitoylphosphatidylcholine-fatty acid mixtures, Biochemistry, 20, 6818-6824 (1981). https://doi.org/10.1021/bi00527a012
  5. S. Mabrey and J. M. Sturtevant, Investigation of phase transitions of lipids and lipid mixtures by sensitivity differential scanning calorimetry, Proc. Natl. Acad. Sci. USA, 73, 3862-3866 (1976). https://doi.org/10.1073/pnas.73.11.3862
  6. Z. Huang and R. M. Epand, Study of the phase behaviour of fully hydrated saturated diacyl phosphatidylserine/fatty acid mixtures with $^{31}P$-NMR and calorimetry, Chem. Phys. Lipids, 86, 161-169 (1997). https://doi.org/10.1016/S0009-3084(97)02666-2
  7. S. P. Verma, D. F. H. Wallach, and D. Sakura, Raman analysis of the thermotropic behavior of lecithin-fatty acid systems and of their interaction with proteolipid apoprotein, Biochemistry, 19, 574-579 (1980). https://doi.org/10.1021/bi00544a028
  8. J. R. Usher, R. M. Epand, and D. Papahadjopoulos, The effect of free fatty acids on the thermotropic phase transition of dimyristoyl glycerophosphocholine, Chem. Phys. Lipids, 22, 245-253 (1978). https://doi.org/10.1016/0009-3084(78)90031-2
  9. J. M. Seddon, R. H. Templer, A. A. Warrender, Z. Huang, G. Cevc, and D. Marsh, Phosphatidylcholinefatty acid membranes: effects of headgroup hydration on the phase behaviour and structural parameters of the gel and inverse hexagonal ($H_{II}$) phases, Biochim. Biophys. Acta 1327, 131-147 (1997). https://doi.org/10.1016/S0005-2736(97)00047-3
  10. Y. V. S. Rama Krishna, D. Marsh, Spin label ESR and $^{31}P$-NMR studies of the cubic and inverted hexagonal phases of dimyristoylphosphatidylcholine/myristic acid (1:2, mol/mol) mixtures, Biochim. Biophys. Acta, 1024, 89-94 (1990). https://doi.org/10.1016/0005-2736(90)90211-6
  11. P. Hoyrup, J. Davidsen, and K. Jrgensen, Lipid membrane partitioning of lysolipids and fatty acids: Effects of membrane phase structure and detergent chain length, J. Phys. Chem. B, 105, 2649-2657 (2001). https://doi.org/10.1021/jp003631o
  12. D. Needham, G. Anyarambhatla, G. Kong, and M. W. Dewhirst, A new temperature-sensitive liposome for use with mild hyperthermia: Characterization and testing in a human tumor xenograft model, Cancer Res., 60, 1197-1201 (2000).
  13. E. Yilmaz and H. H. Borchert, Design of a phytosphingosine-containing, positively-charged nanoemulsion as a colloidal carrier system for dermal application of ceramides, Eur. J. Pharm. Biopharm., 60, 91-98 (2005). https://doi.org/10.1016/j.ejpb.2004.11.009
  14. A. Garg and S. Singh, Enhancement in antifungal activity of eugenol in immunosuppressed rats through lipid nanocarriers, Colloid Surf. B, 87, 280-288 (2011). https://doi.org/10.1016/j.colsurfb.2011.05.030
  15. B. A. I. van den Bergh, P. W. Wertz, H. E. Junginer, and J. A. Bouwstra, Elasticity of vesicles assessed by electron spin resonance, electron microscopy and extrusion measurements, Int. J. Pharm., 217, 13-24 (2001). https://doi.org/10.1016/S0378-5173(01)00576-2
  16. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed., Springer, NewYork (2006).
  17. S. H. Park, S. G. Oh, K. D. Suh. Han, D. J. Chung, J. Y. Mun, S. S. Han, and J. W. Kim, Control over micro-fluidity of liposomal membranes by hybridizing metal nanoparticles, Colloids Surf. B, 70, 108-113 (2009). https://doi.org/10.1016/j.colsurfb.2008.12.024
  18. D. Yang, D. Pornpattananangkul, T. Nakatsuji, M. Chan, D. Carson, C. M. Huang, and L. Zhang, The antimicrobial activity of liposomal lauric acids against Propionibacterium acnes, Biomaterials, 30, 6035-6040 (2009). https://doi.org/10.1016/j.biomaterials.2009.07.033
  19. C. K. Haluska, K. A. Riske, V. Marchi-Artzner, J. M. Lehn, R. Lipowsky, and R. Dimova, Time scales of membrane fusion revealed by direct imaging of vesicle fusion with high temporal resolution, Proc. Natl. Acad. Sci. USA, 103, 15841-15486 (2006). https://doi.org/10.1073/pnas.0602766103
  20. L. Zhang and S. Granick, How to stabilize phospholipid liposomes (using nanoparticles), Nano Lett., 6, 694-698 (2006). https://doi.org/10.1021/nl052455y
  21. J. Marcelino, J. L. F. C. Lima, S. Reis, and C. Matos, Assessing the effects of surfactants on the physical properties of liposome membranes, Chem. Phys. Lipids, 146, 94-103 (2007). https://doi.org/10.1016/j.chemphyslip.2006.12.008
  22. Y. F. Hsieu, T. L. Chen, Y. T. Wang, J. H. Chang, and H. M. Chang, Properties of liposomes prepared with various lipids, J. Food Sci., 67, 2808-2813 (2001).
  23. T. Inoue, S. I. Yanigihara, Y. Misono, and M. Suzuki, Effect of fatty acids on phase behavior of hydrated dipalmitoylphosphatidylcholine bilayer: Saturated versus unsaturated fatty acids, Chem. Phys. Lipids, 109, 117-133 (2001). https://doi.org/10.1016/S0009-3084(00)00170-5
  24. D. M. Small, Potpourri: Effects of unsaturation on lipid structure; plasma cholesterol ester and lipid-transfer proteins; and cholesterol- sensing proteins and cellular cholesterol movement, Curr. Opin. Struct. Biol., 8, 413-416 (1998). https://doi.org/10.1016/S0959-440X(98)80116-4
  25. K. Murzyn, T. Rog, G. Jezierski, Y. Takaoka, and M. Pasenkiewicz-Gierula, Effects of phospholipid unsaturation on the membrane/water interface: A molecular simulation study, Biophys. J., 81, 170-183 (2001). https://doi.org/10.1016/S0006-3495(01)75689-5
  26. T. Rog, K. Murzyn, R. Gurbiel, Y. Takaoka, A. Kusumi, and M. Pasenkiewicz-Gierula, Effects of phospholipid unsaturation on the bilayer nonpolar region: A molecular simulation study, J. Lipid Res., 45, 326-336 (2004). https://doi.org/10.1194/jlr.M300187-JLR200
  27. C. Roach, S. E. Feller, J. A. Ward, and S. R. Shaikh, Comparison of cis and trans fatty acid containing phosphatidylcholines on membrane properties, Biochemistry, 43, 6344-6351 (2004). https://doi.org/10.1021/bi049917r