DOI QR코드

DOI QR Code

Efficient Microwave-assisted Deoxydehydration (DODH) Reactions: Synthesis of Adipic Acid from Galactose

마이크로웨이브를 이용한 효율적인 탈산소탈수(DODH) 반응: 갈락토스 유래 아디픽산의 합성

  • Shin, Nara (Department of Chemical and Biological Engineering, Seoul National University,) ;
  • Kwon, Sohyun (Department of Chemical and Biological Engineering, Seoul National University,) ;
  • Kim, Young Gyu (Department of Chemical and Biological Engineering, Seoul National University,)
  • 신나라 (서울대학교 공과대학 화학생물공학부) ;
  • 권소현 (서울대학교 공과대학 화학생물공학부) ;
  • 김영규 (서울대학교 공과대학 화학생물공학부)
  • Received : 2016.12.13
  • Accepted : 2017.02.05
  • Published : 2017.04.10

Abstract

An efficient synthetic process for bio-based adipic acid, a monomer for nylon 66, was developed from galactose. Galactaric acid, prepared from a mild oxidation of galactose using a Pt catalyst, was successfully converted to muconate, a key intermediate for adipic acid, by an efficient microwave-assisted DODH (deoxydehydration) reaction. The high efficiency of the microwave-assisted reaction greatly reduced the overall reaction time to 30 min. and resulted in an excellent yield of 97% of muconate. The catalytic hydrogenation of muconate followed by the acidic hydrolysis successfully produced the desired adipic acid in high purity after recrystallization.

나일론의 단량체인 아디픽산을 바이오매스인 갈락토스로부터 얻기 위한 효율적인 합성법을 개발하였다. 백금촉매를 이용한 갈락토스의 산화반응을 통해 얻어진 갈락타릭산으로부터 마이크로웨이브를 이용한 탈산소탈수(DODH)반응을 통하여 30 min의 매우 짧은 반응 시간 안에 97%의 높은 수율로 아디픽산의 주요 중간체인 뮤코네이트를 합성하였다. 생성된 뮤코네이트는 팔라듐 촉매를 이용한 수소화 반응 및 가수분해 반응을 통하여 성공적으로 나일론의 단량체인 고순도의 아디픽산으로 전환되었다.

Keywords

References

  1. M. H. Jung, Bioplastics, 1-152, Research and Policy Center for Chemical Technology, KRICT, Korea (2010).
  2. J. Jegal, K. M. Cho, and B. K. Song, Research trends of biomass based polymeric materials, Polym. Sci. Technol., 19, 307-317 (2008).
  3. C. -H. Hong, B. U. Nam, and D. -S. Han, The present situation and prediction of biomass-based nylon, Polym. Sci. Technol., 21, 321-325 (2010).
  4. M. T. Mussser, Adipic acid, Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, Germany (2000).
  5. W. Niu, M. Draths, and J. W. Frost, Benzene-free synthesis of adipic acid, Biotechnol. Prog., 18, 201-211 (2002). https://doi.org/10.1021/bp010179x
  6. T. R. Boussie, E. L. Dias, Z. M. Fresco, U. J. Murphy, V. J. Shoemaker, R. Archer, and H. Jiang, Production of adipic acid and derivatives from carbohydrate-containing materials, US Patent 0317823 A1 (2010).
  7. T. R. Boussie, E. L. Dias, Z. M. Fresco, and U. J. Murphy, Production of glutaric acid and derivatives from carbohydrate-containing materials, US Patent 0317825 A1 (2010).
  8. T. R. Boussie, E. L. Dias, Z. M. Fresco, U. J. Murphy, V. J. Shoemaker, R. Archer, and H. Jiang, Composition of matter, US Patent 0218318 A1 (2011).
  9. T. R. Boussie, E. L. Dias, Z. M. Fresco, U. J. Murphy, V. J. Shoemaker, R. Archer, and H. Jiang, Adipic acid composition, WO 2011/108051 A1 (2011).
  10. A. M. Unrau, Constitution of a galactomannoglycan from the seed of Leucaena glauca, J. Org. Chem., 24, 3097-3263 (1961).
  11. H. Howell and G. S. Fisher, The dissociation constants of some of the terpene acid, J. Am. Chem. Soc., 80, 6316-6319 (1958). https://doi.org/10.1021/ja01556a038
  12. S. Qu, Y. Dang, M. Wen, and Z. Wang, Mechanism of the methyltrioxorhenium-catalyzed deoxydehydration of polyols: A new pathway revealed, Chem. Eur. J., 19, 3827-3832 (2013). https://doi.org/10.1002/chem.201204001
  13. P. Liu and K. M. Nicholas, Mechanism of sulfite-driven, $MeReO_3$ catalyzed deoxydehydration of glycols, Organometallics, 32, 1821-1831 (2013). https://doi.org/10.1021/om301251z
  14. S. Liu, A. Senocak, J. L. Smeltz, L. Yang, B. Wegenhart, J. Yi. H. I. Kenttamaa, E. A. Ison, and M. M. Abu-Omar, Mechanism of MTO-catalyzed deoxydehydration of diols to alkenes using sacrificial alcohols, Organometallics, 32, 3210-3219 (2013). https://doi.org/10.1021/om400127z
  15. S. Vlitiri, G. Chapman, I. Ahmad, and K. M. Nicolas, Rheniumcatalyzed deoxydehydration of glycols by sulfite, Inorg. Chem., 49, 4744-4746 (2010). https://doi.org/10.1021/ic100467p
  16. I. Ahmad, G. Chanpmann, and K. M. Nicholas, Sulfite-driven, oxorhenium-catalyzed deoxydehydration of glycols, Organometallics, 30, 2810-2818 (2011). https://doi.org/10.1021/om2001662
  17. G. K. Cook and M. A. Andrews, Toward nonoxidative routes to oxygenated organics: stereospecific deoxydehydration of diols and polyols to alkenes and allylic alcohols catalyzed by the metal oxo complex $(C_5Me_5)ReO_3$, J. Am. Chem. Soc., 118, 9448-9449 (1996). https://doi.org/10.1021/ja9620604
  18. J. E. Ziegler, M. J. Zdilla, A. J. Evans, and M. M. Abu-Omar, $H_2$-driven deoxygenation of epoxides and diols to alkenes catalyzed by methyltrioxorhenium, Inorg. Chem., 48, 9998-10000 (2009). https://doi.org/10.1021/ic901792b
  19. E. Arceo, J. A. Eiiman, and R. G. Bergman, Rhenium-catalyzed didehydroxylation of vicinal diols to alkenes using a simple alcohol as a reducing agent, J. Am. Chem. Soc., 132, 11408-11409 (2010). https://doi.org/10.1021/ja103436v
  20. J. O. Metzger, Catalytic deoxygenation of carbohydrate renewable resources, ChemCatChem, 5, 680-682 (2013). https://doi.org/10.1002/cctc.201200796
  21. M. Shiramizu and F. D. Toste, Expanding the scope of biomass-derived chemicals through tandem reactions based on oxorhenium-catalyzed deoxydehydration, Angew. Chem. Int. Ed., 52, 12905-12909 (2013). https://doi.org/10.1002/anie.201307564
  22. X. Li, D. Wu, T. Lu, G, Yi, H. Su, and Y. Zhang, Highly efficient chemical process to convert mucic acid into adipic acid and DFT studies of the mechanism of the rhenium-catalyzed deoxydehydration, Angew. Chem. Int. Ed., 53, 1-6 (2014). https://doi.org/10.1002/anie.201310509
  23. V. Canale, L. Tonucci, M. Bressan, and N. d'Alessandro, Deoxydehydration of glycerol to allyl alcohol catalyzed by rhenium derivatives, Catal. Sci. Technol., 4, 3697-3704 (2014). https://doi.org/10.1039/C4CY00631C
  24. G. Chapman Jr. and K. M. Nicholas, Vanadium-catalyzed deoxydehydration of glycols, Chem. Commun., 49, 8199-8201 (2013). https://doi.org/10.1039/c3cc44656e
  25. L. Hills, R. Moyano, F. Montilla, A. Pastor, A. Galindo, E. Alvarez, F. Marchetti, and C. Pettinari, Dioxomolybdenum (VI) complexes with acylpyrazolonate ligands: Synthesis, structures, and catalytic properties, Eur. J. Inorg. Chem., 19, 3352-3361 (2013).
  26. J. R. Dethlesen, D. Lupp, B. Oh, and P. Fristrup, Molybdenum-catalyzed deoxydehydration of vicinal diols, ChemSusChem, 7, 425-428 (2014). https://doi.org/10.1002/cssc.201300945
  27. S. Li and Y. Zhang, Highly efficient process for the conversion of glycerol to acrylic acid via gas phase catalytic oxidation of an allyl alcohol intermediate, ACS Catal., 6, 143-150 (2016). https://doi.org/10.1021/acscatal.5b01843
  28. J. R. Dethlefsen and P. Fristrup, Rhenium-catalyzed deoxydehydration of diols and polyols, ChemSusChem, 8, 767-775 (2015). https://doi.org/10.1002/cssc.201402987
  29. S. Raju, M. Moret, and R. J. M. K. Gebbink, Rhenium-catalyzed dehydration and deoxydehydration of alcohols and polyols: Opportunities for the formation of olefins from biomass, ACS Catal., 5, 281-300 (2015). https://doi.org/10.1021/cs501511x
  30. S. C. Ameta, P. B. Punjabi, R. Ameta, and C. Ameta, Microwave-assisted Organic Synthesis: A Green Chemical Approach, Apple Academic Press, Oakville, Canada (2015).
  31. P. Lidstrom, J. Tierney, B. Wathey, and J. Westman, Microwave assisted organic synthesis-a review, Tetrahedron, 57, 9225-9233 (2001). https://doi.org/10.1016/S0040-4020(01)00906-1
  32. J. Jacob, Microwave assisted reactions in organic chemistry: A review of recent advances, Int. J. Chem., 4, 29-43 (2012).
  33. Y. M. Zhang, P. Wang, N. Han, and H. F. Lei, Microwave irradiation: A novel method for rapid synthesis of D, L-Lactide, Macromol. Rapid Commun., 28, 417-421 (2007). https://doi.org/10.1002/marc.200600668
  34. J. M. H. Dirkx and H. S. van der Vaan, The oxidation of glucose with platinum on carbon as catalyst, J. Catal., 67, 1-13 (1981). https://doi.org/10.1016/0021-9517(81)90256-6
  35. J. M. H. Dirkx and H. S. van der Vaan, The oxidation of gluconic acid with platinum on carbon as catalyst, J. Catal., 67, 14-20 (1981). https://doi.org/10.1016/0021-9517(81)90257-8