DOI QR코드

DOI QR Code

Fabrication of Gel-type Electrolyte for the Development of Reference Electrode for Sea Water and Application to Measuring Equipment for Total Residual Oxidants

해수용 기준전극 개발을 위한 겔 타입 내부전해질 제조 및 잔류염소 측정장치에의 적용

  • 김유진 ((주)테크로스 중앙연구소) ;
  • 이해돈 ((주)테크로스 중앙연구소) ;
  • 김대원 ((주)테크로스 중앙연구소)
  • Received : 2016.09.01
  • Accepted : 2017.01.24
  • Published : 2017.04.10

Abstract

Gel type internal electrolytes were synthesized by varying hydroxyethyl-cellulose (HEC) amounts and their durability and conductivity were measured. The ionic conductivity decreased as the content of HEC increased thus the internal electrolyte containing more than 12% of HEC could not be used as a reference electrode. Based on durability test results, as the HEC amount decreased carrier density resulting in increasing of the amount of KCl coming out of the porous membrane. Therefore in order to use long time at ballast water treatment systems, we selected 10% HEC for gel type internal electrolyte. The resolution test for total residual oxidants (TRO) was carried out using the TRO sensor and the gel type reference electrode made of 10% HEC. A 50 mV potential was applied to the TRO sensor for 30 sec and changes in the current were measured. It was confirmed that the TRO concentrations ranging from 0 to 15 mg/L could be separated at salinity conditions of 0.2~30 PSU. The results indicated that the TRO concentration at sea water and at fresh water was successfully measured by the TRO sensor constructed with the reference electrode using gel-type internal electrolyte of HEC.

Hydroxyethyl-cellulose (HEC) 함량별로 겔 타입 내부전해질을 제작하여 이온전도도와 내구성 측정 실험을 수행하였다. 이온전도도 측정결과 HEC 함량이 증가할수록 이온전도도가 감소하여 12% 함량의 겔 타입 내부전해질은 기준전극에 적용이 어려울 것으로 판단하였다. HEC 함량별 내구성 실험결과, HEC의 함량이 감소할수록 carrier density가 증가하여 다공성 막을 통해 유출되는 전해질(KCl)의 양이 증가하였다. 따라서 선박평형수 처리장치와 같이 장시간 사용하기 위해 겔 타입 내부전해질을 HEC 10%로 선정하였다. HEC 10%의 겔 타입 내부전해질을 이용하여 기준전극과 TRO (total residual oxidants) 센서를 제작하여 TRO 분리능 실험을 수행하였다. TRO 센서에 50 mV의 전위를 30 s 동안 동일하게 인가하여 전류변화를 비교한 결과 0.2~30 PSU 조건에서 0~15 mg/L의 TRO 농도가 분리됨을 확인하였다. 따라서 HEC를 이용한 겔 타입 내부전해질을 TRO 센서에 적용할 수 있으며, 이를 이용하여 담수뿐만 아니라 해수 조건에서 TRO를 측정할 수 있음을 확인하였다.

Keywords

References

  1. D. E. Verna and B. P. Harris, Review of ballast water management policy and associated implications for Alaska, Mar. Policy, 70, 13-21 (2016). https://doi.org/10.1016/j.marpol.2016.04.024
  2. D. R. Scriven, C. Dibacco, A. Locke, and T. W. Therriault, Ballast water management in Canada: A historical perspective and implications for the future, Mar. Policy, 59, 121-133 (2015). https://doi.org/10.1016/j.marpol.2015.05.014
  3. L. Maglic, D. Zec, and V. Francic, Ballast water sediment elemental analysis, Mar. Pollut. Bull., 103, 93-100 (2016). https://doi.org/10.1016/j.marpolbul.2015.12.042
  4. J. Culin and B. Mustac, Environmental risks associated with ballast water management systems that create disinfection by-products (DBPs), Ocean Coast Manag., 105, 100-105 (2015). https://doi.org/10.1016/j.ocecoaman.2015.01.004
  5. B. Werschkun, S. Banerji, O. C. Basurko, M. David, F. Fuhr, S. Gollasch, T. Grummt, M. Harrich, A. N. Jha, S. Kacan, A. Kehrer, J. Linders, E. Mesbahi, D. Pughiuc, S. D. Richardson, B. S. Schulz, A. Shah, N. Theoblad, U. V. Gunten, S. Wieck, and T. Hofer, Emerging risks from ballast water treatment: The run-up to the International Ballast Water Management Convention, Chemosphere, 112, 256-266 (2014). https://doi.org/10.1016/j.chemosphere.2014.03.135
  6. N. Zhang, Y. Wang, J. Xue, L. Yuan, Q. Wang, L. Liu, H. Wu, and K. Hu, Risk assessment of human health from exposure to the discharged ballast water after full-scale electrolysis treatment, Regul. Toxicol. Pharmacol., 77, 192-199 (2016). https://doi.org/10.1016/j.yrtph.2016.03.011
  7. S. Delacroix, C. Vogelsang, A. Tobiesen, and H. Liltved, Disinfection by-products and ecotoxicity of ballast water after oxidative treatment - Results and experiences from seven years of full-scale testing of ballast water management systems, Mar. Pollut. Bull., 73, 24-36 (2013). https://doi.org/10.1016/j.marpolbul.2013.06.014
  8. K. W. Park, S. T. Kim, H. D. Lee, Y. S. Park, D. W. Kim, K. S. Lee, J. H. Ku, and Y. J. Kim, Ballast water treatment system, US Patent 14/779,153 (2014).
  9. A. G. Zimmer-Faust, R. F. Ambrose, and M. N. Tamburri, Evaluation of approaches to quantify total residual oxidants in ballast water management system employing chlorine for disinfection, Water Sci. Technol., 70, 1585-1593 (2014). https://doi.org/10.2166/wst.2014.394
  10. M. Jovic, F. Cortes-Salazar, A. Lesch, V. Amstutz, H. Bi, and H. H. Girault, Electrochemical detection of free chlorine at inkjet printed silver electrodes, J. Electroanal. Chem., 756, 171-178 (2015). https://doi.org/10.1016/j.jelechem.2015.08.024
  11. B. Saad, W. T. Wai, Md. S. Jab, W. S. W. Ngah, M. I. Saleh, and J. M. Salter, Development of flow injection spectrophotometric methods for the determination of free available chlorine and total available chlorine: comparative study, Anal. Chim. Acta, 537, 197-206 (2005). https://doi.org/10.1016/j.aca.2005.01.002
  12. L. Moberg and B. Karlberg, An improved N,N'-diethyl-p-phenylenediamine (DPD) method for the determination of free chlorine based on multiple wavelength detection, Anal. Chim. Acta, 407, 127-133 (2000). https://doi.org/10.1016/S0003-2670(99)00780-1
  13. X. H. Dai, J. Zhang, X. J. Pang, J. P. Zhou, G. Z. Liu, and S. Y. Zhang, Ferrocene-enhanced polyvinyl chloride-coated electrode for the potentiometric detection of total residual chlorine in simulated ballast water, J. Electroanal. Chem., 760, 158-164 (2016). https://doi.org/10.1016/j.jelechem.2015.11.036
  14. F. Kodera, M. Umeda, and A. Yamada, Determination of free chlorine based on anodic voltammetry using platinum, gold, and glassy carbon electrodes, Anal. Chim. Acta, 537, 293-298 (2005). https://doi.org/10.1016/j.aca.2005.01.053
  15. D. K. Lee, T. Y. Kang, H. J. Woo, S. W. Kim, and J. K. Kim, Residual chlorine sensor on electrochemistry and measurement equipment use thereof, Korean Patent 10-2002-0043267 (2002).
  16. H. Hwang, Methods of Electrochemical Analysis, 1-17, Free Academy, Gyeonggi-do, Korea (2011).
  17. F. Javier Del Campo, O. Ordeig, and F. Javier Munoz, Improved free chlorine amperometric sensor chip for drinking water application, Anal. Chim. Acta, 554, 98-104 (2005). https://doi.org/10.1016/j.aca.2005.08.035
  18. M. Murata, T. A. Ivandini, M. Shibata, S. Nomura, A. Fujishima, and Y. Einaga, Electrochemical detection of free chlorine at highly boron-doped diamond electrodes, J. Electroanal. Chem., 612, 29-36 (2008). https://doi.org/10.1016/j.jelechem.2007.09.006
  19. W. Vonau, W. OelBner, U. Guth, and J. Henze, An all-solid-state reference electrode, Sens. Actuators B, 144, 368-373 (2010). https://doi.org/10.1016/j.snb.2008.12.001
  20. G. Inzelt, A. Lewenstam, and F. Scholz, Handbook of Reference Electrode, 92-96, Springer, NY, USA (2013).
  21. B. J. An, J. T. Lee, and C. E. Lee, Novel Cosmetic Materials, 230-231, Kwang Moon Gak, Gyeonggi-do, Korea (2009).
  22. S. J. Oh, H. J. Shim, D. W. Kim, M. H. Lee, C. J. Lee, and Y. K. Kang, In-situ cross-linked gel polymer electrolyte using perfluorinated acrylate as cross-linker, J. Korean Electrochem. Soc., 13, 145-152 (2010). https://doi.org/10.5229/JKES.2010.13.2.145

Cited by

  1. Facial Fabrication and Characterization of Novel Ag/AgCl Chloride Ion Sensor Based on Gel-Type Electrolyte vol.8, pp.None, 2020, https://doi.org/10.3389/fchem.2020.574986