References
- Akhtar, M. J., Ahamed, M., Alhadlaq, H. A. and Alshamsan, A. (2017) Mechanism of ROS scavenging and antioxidant signalling by redox metallic and fullerene nanomaterials: Potential implications in ROS associated degenerative disorders. Biochim. Biophys. Acta 1861: 802-813. https://doi.org/10.1016/j.bbagen.2017.01.018
- Dickinson, B. C. and Chang, C. J. (2011) Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat. Chem. Biol. 7: 504-511. https://doi.org/10.1038/nchembio.607
- Perrone, G. G., Tan, S. X. and Dawes, I. W. (2008) Reactive oxygen species and yeast apoptosis. Biochim. Biophys. Acta 1783: 1354-1368. https://doi.org/10.1016/j.bbamcr.2008.01.023
- Bouayed, J. and Bohn, T. (2010) Exogenous antioxidants-Double-edged swords in cellular redox state: Health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxid. Med. Cell Longev. 3: 228-237. https://doi.org/10.4161/oxim.3.4.12858
- den Endea, W. V., Pesheva, D. and Garab, L. D. (2011) Disease prevention by natural antioxidants and prebiotics acting as ROS scavengers in the gastrointestinal tract. Trends in Food Science & Technology 22: 689-697. https://doi.org/10.1016/j.tifs.2011.07.005
- Shin, T. S., Kang, H. S., Kim, S. K., Lee, K. W. and Cho, B. W. (1999) Effect of natural and synthetic antioxidants on pH, POV, fatty acids composition and overall acceptability of cooked ground pork. J. Agri. Tech. & Dev. Inst. 3: 1-9.
-
Gill, I., Kaur, S., Kaur, N., Dhiman, M. and Mantha, A. K. (2017) Phytochemical ginkgolide B attenuates amyloid-
${\beta}1$ -42 induced oxidative damage and altered cellular responses in human neuroblastoma SH-SY5Y cells. J. Alzheimers Dis. Doi: 10.3233/JAD-161086. - Guo, J.-X., Kimura, T., But, P. P. H. and Sung, C. K. (2001) International collation of traditional and folk medicine, 22-23. World Scientific, Singapore.
- Hwang, B. Y., Lee, J. H., Nam, J. B., Hong, Y. S. and Lee, J. J. (2003) Lignans from Saururus chinensis inhibiting the transcription factor NF-kB. Phytochemistry 64: 765-771. https://doi.org/10.1016/S0031-9422(03)00391-1
- Song, H., Kim, Y. C. and Moon, A. (2003) Sauchinone, a lignan from Saururus chinensis, inhibits staurosporine-induced apoptosis in C6 rat glioma cells. Biol. Pharm. Bull. 26: 1428-1430. https://doi.org/10.1248/bpb.26.1428
- Tsai, W. J., Shen, C. C., Tsai, T. H. and Lin, L. C. (2014) Lignans from the aerial parts of Saururus chinensis: isolation, structural characterization, and their effects on platelet aggregation. J. Nat. Prod. 77: 125-131. https://doi.org/10.1021/np400772h
- Cui, H., Xu, B., Wu, T., Xu, J., Yuan, Y. and Gu, Q. (2014) Potential antiviral lignans from the roots of Saururus chinensis with activity against Epstein-Barr virus lytic replication. J. Nat. Prod. 77: 100-110. https://doi.org/10.1021/np400757k
- Kang, T. H., Cho, H., Oh, H., Sohn, D. H. and Kim, Y. C. (2005) Flavonol glycosides with free radical-scavenging activity of Saururus chinensis. Fitoterapia 76: 115-117. https://doi.org/10.1016/j.fitote.2004.10.011
- Meng, X., Kim, I., Jeong, Y. J., Cho, Y. M. and Kang, S. C. (2016) Anti-inflammatory effects of Saururus chinensis aerial parts in murine macrophages via induction of heme oxygenase-1. Exp. Biol. Med. (Maywood). 241: 396-408. https://doi.org/10.1177/1535370215614657
- Lee, A. Y., Han, Y. A., Kim, J. E., Hong, S. H., Park, E. J. and Cho, M. H. (2015) Saururus chinensis Baill induces apoptosis through endoplasmic reticulum stress in HepG2 hepatocellular carcinoma cells. Food Chem. Toxicol. 83: 183-192. https://doi.org/10.1016/j.fct.2015.05.008
- Moon, S. H., Choi, S. W., Park, S. J., Ryu, S. Y., Hwang, K. S., Kim, C. H. and Kim, S. H. (2015) In vitro and in vivo Bone-Forming Activity of Saururus chinensis Extract. Phytother. Res. 29: 1073-1080. https://doi.org/10.1002/ptr.5349
- Jeong, H. J., Koo, B. S., Kang, T. H., Shin, H. M., Jung, S. and Jeon, S. (2015) Inhibitory effects of Saururus chinensis and its components on stomach cancer cells. Phytomedicine 22: 256-261. https://doi.org/10.1016/j.phymed.2014.12.003
- Lee, D. H., Kim, D. H., Oh, I. Y., Kim, S.Y., Lim, Y. Y., Kim, H. M., Kim, Y. H., Choi, Y. M., Kim, S. E., Kim, B. J. and Kim, M. N. (2013) Inhibitory effects of Saururi chinensis extracts on melanin biosynthesis in B16F10 melanoma cells. Biol. Pharm. Bull. 36: 772-779. https://doi.org/10.1248/bpb.b12-00917
- Yoshida, T., Mori, K., Hatano, T., Okumura, T., Uehara, I., Komagoe, K., Fujita, Y. and Okuda, T. (1989) Studies on inhibition mechanism of autooxidation by tannins and flavonoids. V: Radical scavenging effects of tannins and related polyphenols on 1,1-diphenyl-2-picrylhydrazyl radical. Chem. Pharm. Bull. 37: 1919-1921. https://doi.org/10.1248/cpb.37.1919
- Ginnopolitis, C. N. and Ries, S. K. (1977) Superoxide dismutase. I. Occurrence in higher plants. Plant Physiol. 59: 309-314. https://doi.org/10.1104/pp.59.2.309
- Brenner, S. (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71-94.
- Mekheimer, R. A., Sayed, A. A. and Ahmed, E. A. (2012) Novel 1,2,4-triazolo[1,5-a]pyridines and their fused ring systems attenuate oxidative stress and prolong lifespan of Caenorhabiditis elegans. J. Med. Chem. 55: 4169-4177. https://doi.org/10.1021/jm2014315
- Aebi, H. (1984) Catalase in vitro. Method. Enzymol. 105: 121-126.
- Kim, H. N., Seo, H. W., Kim, B. S., Lim H. J., Lee, H, N., Park, J. S., Yoon, Y. J., Oh, J. W., Oh, M. J., Kwon, J., Oh, C. H., Cha, D. S. and Jeon, H. (2015) Lindera obtusiloba extends lifespan of Caenorhabditis elegans. Nat. Prod. Sci. 21: 128-133.
- Lee, E. Y., Shim, Y. H., Chitwood, D. J., Hwang, S. B., Lee, J. and Paik, Y. K. (2005) Cholesterol-producing transgenic Caenorhabditis elegans lives longer due to newly acquired enhanced stress resistance. Biochem. Biophys. Res. Commun. 328: 929-936. https://doi.org/10.1016/j.bbrc.2005.01.050
- Guha, S., Natarajan, O., Murbach, C. G., Dinh, J., Wilson, E. C., Cao, M., Zou, S. and Dong, Y. (2014) Supplement timing of cranberry extract plays a key role in promoting Caenorhabditis elegans healthspan. Nutrients 21: 911-921.
- Sampayo, J. N., Olsen, A. and Lithgow, G. J. (2003) Oxidative stress in Caenorhabditis elegans: protective effects of superoxide dismutase/catalase mimetics. Aging Cell 2: 319-326. https://doi.org/10.1046/j.1474-9728.2003.00063.x
- Berger, M. M. (2005) Can oxidative damage be treated nutritionally? Clin. Nutr. 24: 172-183. https://doi.org/10.1016/j.clnu.2004.10.003
- Sun, Y. (1990) Free radicals, antioxidant enzymes, and carcinogenesis. Free Radic. Biol. Med. 8: 583-599. https://doi.org/10.1016/0891-5849(90)90156-D
- Bokov, A., Chaudhuri, A. and Richardson, A. (2004) The role of oxidative damage and stress in aging. Mech. Ageing Dev. 125: 811-826. https://doi.org/10.1016/j.mad.2004.07.009
- Choi, H. N., Park, Y. H., Kim, J. H., Kang, M. J., Jeong, S. M., Kim, H. H. and Kim, J. I. (2011) Renoprotective and antioxidant effects of Saururus chinensis Baill in rats fed a highfructose diet. Nutr. Res. Pract. 5: 365-369. https://doi.org/10.4162/nrp.2011.5.4.365
- Lee, Y. J., Kim, J., Yi, J. M., Oh, S. M., Kim, N. S., Kim, H., Oh, D. S., Bang, O. S. and Lee, J. (2012) Anti-proliferative neolignans from Saururus chinensis against human cancer cell lines. Biol. Pharm. Bull. 35: 1361-1366. https://doi.org/10.1248/bpb.b110670