Anti-oxidative Effects of Ethyl acetate Fraction of Saururus chinensis in Caenorhabditis elegans

삼백초 Ethyl acetate 분획물의 예쁜꼬마선충 내의 항산화 효과

  • Received : 2017.03.14
  • Accepted : 2017.03.22
  • Published : 2017.03.31

Abstract

Saururus chinensis (Lour.) Baill. (Saururaceae) has been used as a traditional medicine for the treatment of dysuria, leukorrhea, eczema, jaundice and ascites in Korea, China and Japan. Ethanol extract of S. chinensis was successively partitioned as methylene chloride, ethyl acetate, n-butanol and $H_2O$ soluble fractions. Among those fractions the ethyl acetate soluble fraction showed the most potent DPPH radical scavenging and superoxide quenching activities. To verify antioxidant activities of ethyl acetate fraction, we checked the activities of superoxide dismutase (SOD) and catalase, and intracellular ROS level and oxidative stress tolerance in Caenorhabditis elegans. Furthermore, to see if increased stress tolerance of worms by treating of ethyl acetate fraction was due to regulation of stress-response gene, we quantified SOD-3 expression using transgenic strain. Consequently, ethyl acetate fraction elevated SOD and catalase activities of C. elegans, and reduced intracellular ROS accumulation in a dose-dependent manner. Moreover, ethyl acetate fraction-treated CF1553 worms exhibited significantly higher SOD-3::GFP intensity.

Keywords

References

  1. Akhtar, M. J., Ahamed, M., Alhadlaq, H. A. and Alshamsan, A. (2017) Mechanism of ROS scavenging and antioxidant signalling by redox metallic and fullerene nanomaterials: Potential implications in ROS associated degenerative disorders. Biochim. Biophys. Acta 1861: 802-813. https://doi.org/10.1016/j.bbagen.2017.01.018
  2. Dickinson, B. C. and Chang, C. J. (2011) Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat. Chem. Biol. 7: 504-511. https://doi.org/10.1038/nchembio.607
  3. Perrone, G. G., Tan, S. X. and Dawes, I. W. (2008) Reactive oxygen species and yeast apoptosis. Biochim. Biophys. Acta 1783: 1354-1368. https://doi.org/10.1016/j.bbamcr.2008.01.023
  4. Bouayed, J. and Bohn, T. (2010) Exogenous antioxidants-Double-edged swords in cellular redox state: Health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxid. Med. Cell Longev. 3: 228-237. https://doi.org/10.4161/oxim.3.4.12858
  5. den Endea, W. V., Pesheva, D. and Garab, L. D. (2011) Disease prevention by natural antioxidants and prebiotics acting as ROS scavengers in the gastrointestinal tract. Trends in Food Science & Technology 22: 689-697. https://doi.org/10.1016/j.tifs.2011.07.005
  6. Shin, T. S., Kang, H. S., Kim, S. K., Lee, K. W. and Cho, B. W. (1999) Effect of natural and synthetic antioxidants on pH, POV, fatty acids composition and overall acceptability of cooked ground pork. J. Agri. Tech. & Dev. Inst. 3: 1-9.
  7. Gill, I., Kaur, S., Kaur, N., Dhiman, M. and Mantha, A. K. (2017) Phytochemical ginkgolide B attenuates amyloid-${\beta}1$-42 induced oxidative damage and altered cellular responses in human neuroblastoma SH-SY5Y cells. J. Alzheimers Dis. Doi: 10.3233/JAD-161086.
  8. Guo, J.-X., Kimura, T., But, P. P. H. and Sung, C. K. (2001) International collation of traditional and folk medicine, 22-23. World Scientific, Singapore.
  9. Hwang, B. Y., Lee, J. H., Nam, J. B., Hong, Y. S. and Lee, J. J. (2003) Lignans from Saururus chinensis inhibiting the transcription factor NF-kB. Phytochemistry 64: 765-771. https://doi.org/10.1016/S0031-9422(03)00391-1
  10. Song, H., Kim, Y. C. and Moon, A. (2003) Sauchinone, a lignan from Saururus chinensis, inhibits staurosporine-induced apoptosis in C6 rat glioma cells. Biol. Pharm. Bull. 26: 1428-1430. https://doi.org/10.1248/bpb.26.1428
  11. Tsai, W. J., Shen, C. C., Tsai, T. H. and Lin, L. C. (2014) Lignans from the aerial parts of Saururus chinensis: isolation, structural characterization, and their effects on platelet aggregation. J. Nat. Prod. 77: 125-131. https://doi.org/10.1021/np400772h
  12. Cui, H., Xu, B., Wu, T., Xu, J., Yuan, Y. and Gu, Q. (2014) Potential antiviral lignans from the roots of Saururus chinensis with activity against Epstein-Barr virus lytic replication. J. Nat. Prod. 77: 100-110. https://doi.org/10.1021/np400757k
  13. Kang, T. H., Cho, H., Oh, H., Sohn, D. H. and Kim, Y. C. (2005) Flavonol glycosides with free radical-scavenging activity of Saururus chinensis. Fitoterapia 76: 115-117. https://doi.org/10.1016/j.fitote.2004.10.011
  14. Meng, X., Kim, I., Jeong, Y. J., Cho, Y. M. and Kang, S. C. (2016) Anti-inflammatory effects of Saururus chinensis aerial parts in murine macrophages via induction of heme oxygenase-1. Exp. Biol. Med. (Maywood). 241: 396-408. https://doi.org/10.1177/1535370215614657
  15. Lee, A. Y., Han, Y. A., Kim, J. E., Hong, S. H., Park, E. J. and Cho, M. H. (2015) Saururus chinensis Baill induces apoptosis through endoplasmic reticulum stress in HepG2 hepatocellular carcinoma cells. Food Chem. Toxicol. 83: 183-192. https://doi.org/10.1016/j.fct.2015.05.008
  16. Moon, S. H., Choi, S. W., Park, S. J., Ryu, S. Y., Hwang, K. S., Kim, C. H. and Kim, S. H. (2015) In vitro and in vivo Bone-Forming Activity of Saururus chinensis Extract. Phytother. Res. 29: 1073-1080. https://doi.org/10.1002/ptr.5349
  17. Jeong, H. J., Koo, B. S., Kang, T. H., Shin, H. M., Jung, S. and Jeon, S. (2015) Inhibitory effects of Saururus chinensis and its components on stomach cancer cells. Phytomedicine 22: 256-261. https://doi.org/10.1016/j.phymed.2014.12.003
  18. Lee, D. H., Kim, D. H., Oh, I. Y., Kim, S.Y., Lim, Y. Y., Kim, H. M., Kim, Y. H., Choi, Y. M., Kim, S. E., Kim, B. J. and Kim, M. N. (2013) Inhibitory effects of Saururi chinensis extracts on melanin biosynthesis in B16F10 melanoma cells. Biol. Pharm. Bull. 36: 772-779. https://doi.org/10.1248/bpb.b12-00917
  19. Yoshida, T., Mori, K., Hatano, T., Okumura, T., Uehara, I., Komagoe, K., Fujita, Y. and Okuda, T. (1989) Studies on inhibition mechanism of autooxidation by tannins and flavonoids. V: Radical scavenging effects of tannins and related polyphenols on 1,1-diphenyl-2-picrylhydrazyl radical. Chem. Pharm. Bull. 37: 1919-1921. https://doi.org/10.1248/cpb.37.1919
  20. Ginnopolitis, C. N. and Ries, S. K. (1977) Superoxide dismutase. I. Occurrence in higher plants. Plant Physiol. 59: 309-314. https://doi.org/10.1104/pp.59.2.309
  21. Brenner, S. (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71-94.
  22. Mekheimer, R. A., Sayed, A. A. and Ahmed, E. A. (2012) Novel 1,2,4-triazolo[1,5-a]pyridines and their fused ring systems attenuate oxidative stress and prolong lifespan of Caenorhabiditis elegans. J. Med. Chem. 55: 4169-4177. https://doi.org/10.1021/jm2014315
  23. Aebi, H. (1984) Catalase in vitro. Method. Enzymol. 105: 121-126.
  24. Kim, H. N., Seo, H. W., Kim, B. S., Lim H. J., Lee, H, N., Park, J. S., Yoon, Y. J., Oh, J. W., Oh, M. J., Kwon, J., Oh, C. H., Cha, D. S. and Jeon, H. (2015) Lindera obtusiloba extends lifespan of Caenorhabditis elegans. Nat. Prod. Sci. 21: 128-133.
  25. Lee, E. Y., Shim, Y. H., Chitwood, D. J., Hwang, S. B., Lee, J. and Paik, Y. K. (2005) Cholesterol-producing transgenic Caenorhabditis elegans lives longer due to newly acquired enhanced stress resistance. Biochem. Biophys. Res. Commun. 328: 929-936. https://doi.org/10.1016/j.bbrc.2005.01.050
  26. Guha, S., Natarajan, O., Murbach, C. G., Dinh, J., Wilson, E. C., Cao, M., Zou, S. and Dong, Y. (2014) Supplement timing of cranberry extract plays a key role in promoting Caenorhabditis elegans healthspan. Nutrients 21: 911-921.
  27. Sampayo, J. N., Olsen, A. and Lithgow, G. J. (2003) Oxidative stress in Caenorhabditis elegans: protective effects of superoxide dismutase/catalase mimetics. Aging Cell 2: 319-326. https://doi.org/10.1046/j.1474-9728.2003.00063.x
  28. Berger, M. M. (2005) Can oxidative damage be treated nutritionally? Clin. Nutr. 24: 172-183. https://doi.org/10.1016/j.clnu.2004.10.003
  29. Sun, Y. (1990) Free radicals, antioxidant enzymes, and carcinogenesis. Free Radic. Biol. Med. 8: 583-599. https://doi.org/10.1016/0891-5849(90)90156-D
  30. Bokov, A., Chaudhuri, A. and Richardson, A. (2004) The role of oxidative damage and stress in aging. Mech. Ageing Dev. 125: 811-826. https://doi.org/10.1016/j.mad.2004.07.009
  31. Choi, H. N., Park, Y. H., Kim, J. H., Kang, M. J., Jeong, S. M., Kim, H. H. and Kim, J. I. (2011) Renoprotective and antioxidant effects of Saururus chinensis Baill in rats fed a highfructose diet. Nutr. Res. Pract. 5: 365-369. https://doi.org/10.4162/nrp.2011.5.4.365
  32. Lee, Y. J., Kim, J., Yi, J. M., Oh, S. M., Kim, N. S., Kim, H., Oh, D. S., Bang, O. S. and Lee, J. (2012) Anti-proliferative neolignans from Saururus chinensis against human cancer cell lines. Biol. Pharm. Bull. 35: 1361-1366. https://doi.org/10.1248/bpb.b110670