DOI QR코드

DOI QR Code

Analysis of source localization of P300 in college students with schizotypal traits

조현형 인격 성향을 가진 대학생의 P300 국소화 분석

  • Jang, Kyoung-Mi (Department of Psychology, Sungshin Women's University) ;
  • Kim, Bo-Mi (Department of Psychology, Sungshin Women's University) ;
  • Na, Eun-Chan (Department of Psychology, Sungshin Women's University) ;
  • An, Eun-Ji (Department of Psychology, Sungshin Women's University) ;
  • Kim, Myung-Sun (Department of Psychology, Sungshin Women's University)
  • 장경미 (성신여자대학교 심리학과) ;
  • 김보미 (성신여자대학교 심리학과) ;
  • 나은찬 (성신여자대학교 심리학과) ;
  • 안은지 (성신여자대학교 심리학과) ;
  • 김명선 (성신여자대학교 심리학과)
  • Received : 2017.01.04
  • Accepted : 2017.01.07
  • Published : 2017.03.31

Abstract

This study investigated the cortical generators of P300 in college students with schizotypal traits by using an auditory oddball paradigm, event-related potentials (ERPs) and standardized low resolution brain electromagnetic tomography (sLORETA) model. We also investigated the relationship between the current density of P300 and the clinical symptoms of schizophrenia. Based on the scores of Schizotypal Personality Questionnaire(SPQ), schizotypal trait (n=37) and control (n=42) groups were selected. For the measurement of P300, an auditory oddball paradigm, in which frequent standard tones (1000Hz) and rare target tones (1500Hz) were presented randomly, was used. Participants were required to count the number of the target tones during the task and report this at the end of the experiment. The two groups did not differ significantly in the accuracy of the oddball task. The schizotypal trait group showed significantly smaller P300 amplitudes than control group. In terms of source localization, both groups showed the P300 current density over bilateral frontal, parietal, temporal and occipital lobes. However, the schizotypal trait group showed significantly reduced activations in the left superior temporal gyrus and the right middle temporal gyrus, but increased activations in both left inferior frontal gyrus and right superior frontal gyrus compared to the control group. Furthermore, a negative correlation between the current density of the right superior frontal gyrus and SPQ disorganization score was found in the schizotypal trait group. These findings indicate that the individuals with schizotypal traits have dysfunctions of frontal and temporal areas, which are known to be the source of P300, as observed in patients with schizophrenia. In addition, the present results indicate that the disorganization score, rather than total score, of the SPQ is useful in predicting the risk of future schizophrenia.

본 연구는 청각 oddball 방안, 사건관련전위와 sLORETA를 사용하여 조현형 인격 성향을 가지는 대학생의 P300 신호원을 조사하였다. 또한 P300 신호원의 전류밀도와 조현병 증상간의 관계를 조사하였다. Schizotypal personality questionnaire(SPQ)의 점수에 근거하여 조현형 인격성향군(n=37)과 정상통제군(n=42)을 선정하였다. P300은 자주 제시되는 표준 자극(1000Hz)과 드물게 제시되는 목표 자극(1500Hz)으로 구성되는 청각 oddball 과제를 사용하여 측정하였으며, 참여자들은 목표 자극이 몇 번 제시되었는지 횟수를 세어 실험 후 보고하는 것이 요구되었다. 행동분석 결과, Oddball 과제의 정확률에서는 두 집단 간 유의한 차이가 관찰되지 않았다. 사건관련전위를 분석한 결과, 조현형 인격성향군이 정상통제군에 비해 유의하게 감소된 P300 진폭을 보였다. P300의 신호원을 추정하기 위하여 sLORETA를 사용하여 분석한 결과, 두 집단 모두에서 좌우반구 전두엽, 두정엽, 측두엽, 후두엽에 분포되어 관찰되었다. 두 집단의 P300 신호원의 전류밀도를 비교한 결과, 조현형 인격성향군이 정상통제군에 비해 좌반구 상측두회와 우반구 중측두회에서 감소된 활성화를 보인 반면 좌반구 하전두회와 우반구 상전두회에서는 활성화 증가를 보였다. 이에 덧붙여, 조현형 인격성향군에서 우반구 상전두회의 전류밀도와 SPQ의 와해 점수 사이에 부적 상관이 관찰되었다. 이러한 결과는 P300 신호 원인 전두 및 측두 영역의 이상을 조현병 환자뿐만 아니라 경미한 증상을 가지고 있는 조현형 인격성향군도 가지고 있음을 시사한다. 이에 덧붙여 본 연구 결과는 조현병 고위험군의 선별에 사용되는 SPQ의 경우 총점보다는 와해 점수가 고위험군의 선별에 더 유용하게 사용될 수 있음을 시사한다.

Keywords

References

  1. 전춘수, 김명선 (2010). 분열형 인격성향과 강박성향을 가진 여자대학생의 신경심리 프로파일 비교. 한국심리학회지: 임상, 29, 387-405.
  2. 문희옥, 양익홍, 이홍표, 김묘은, 함웅 (1997). 한국판 분열형 성격척도의 타당화 예비연구. 신경정신의학, 36, 329-343.
  3. 염태호, 박영숙, 오경자, 김정규, 이영호 (1992). K-WAIS 실시요강. 서울: 한국 가이던스.
  4. 이용승, 김중술 (1995). K-WAIS 단축형의 타당도 연구. 한국심리학회지: 임상, 14, 111-116.
  5. 한오수, 안준호, 송선희, 조맹제, 김장규, 배재남, 조성진, 정범수, 서동우, 함봉진, 이동우, 박종익, 홍진표 (2000). 한국어 판 구조화 임상면담도구 개발: 신뢰도 연구. 신경정신의학, 39, 362-372.
  6. Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2014). Inhibition and the right inferior frontal cortex: One decade on. Trends in Cognitive Sciences, 18, 177-185. https://doi.org/10.1016/j.tics.2013.12.003
  7. Bachiller, A., Romero, S., Molina, V., Alonso, J. F., Mananas, M. A., Poza, J., & Hornero, R. (2015). Auditory P3a and P3b neural generators in schizophrenia: An adaptive sLORETA P300 localization approach. Schizophrenia Research, 169, 318-325. https://doi.org/10.1016/j.schres.2015.09.028
  8. Bae, K. Y., Kim, D. W., Im, C. H., & Lee, S. H. (2011). Source imaging of P300 auditory evoked potentials and clinical correlations in patients with posttraumatic stress disorder. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 35, 1908-1917. https://doi.org/10.1016/j.pnpbp.2011.08.002
  9. Benedict, R. H., Shucard, D. W., Santa Maria, M. P., Shucard, J. L., Abara, J. P., Coad, M. L., Wack, D., Sawusch, J., & Lockwood, A. (2002). Covert auditory attention generates activation in the rostral/dorsal anterior cingulate cortex. Journal of Cognitive Neuroscience, 14, 637-645. https://doi.org/10.1162/08989290260045765
  10. Bledowski, C., Prvulovic, D., Goebel, R., Zanella, F. E., & Linden, D. E. (2004). Attentional systems in target and distractor processing: A combined ERP and fMRI study. Neuroimage, 22, 530-540. https://doi.org/10.1016/j.neuroimage.2003.12.034
  11. Bocquillon, P., Bourriez, J. L., Palmero-Soler, E., Betrouni, N., Houdayer, E., Derambure, P., & Dujardin, K. (2011). Use of swLORETA to localize the cortical sources of target- and distracter-elicited P300 components. Clinical Neurophysiology, 122, 1991-2002.
  12. Buchsbaum, M. S., Nenadic, I., Hazlett, E. A., Spiegel-Cohen, J., Fleischman, M. B., Akhavan, A., Silverman, J. M., & Siever, L. J. (2002). Differential metabolic rates in prefrontal and temporal brodmann areas in schizophrenia and schizotypal personality disorder. Schizophrenia Research, 54, 141-150. https://doi.org/10.1016/S0920-9964(01)00361-9
  13. Buchsbaum, M. S., Yang, S., Hazlett, E., Siegel, B. V., Jr, Germans, M., Haznedar, M., O'Flaithbheartaigh, S., Wei, T., Silverman, J., & Siever, L. J. (1997). Ventricular volume and asymmetry in schizotypal personality disorder and schizophrenia assessed with magnetic resonance imaging. Schizophrenia Research, 27, 45-53. https://doi.org/10.1016/S0920-9964(97)00087-X
  14. Chang, W. H., Chen, K. C., Yang, Y. K., Chen, P. S., Lu, R. B., Yeh, T. L., Wnag, C. S., & Lee, I. H. (2014). Association between auditory P300, psychopathology, and memory function in drug-naive schizophrenia. The Kaohsiung Journal of Medical Sciences, 30, 133-138. https://doi.org/10.1016/j.kjms.2013.10.003
  15. Chun, J., Karam, Z. N., Marzinzik, F., Kamali, M., O'Donnell, L., Tso, I. F., Manschreck, T. C., Mclnnis, M., & Deldin, P. J. (2013). Can P300 distinguish among schizophrenia, schizoaffective and bipolar I disorders? an ERP study of response inhibition. Schizophrenia Research, 151, 175-184. https://doi.org/10.1016/j.schres.2013.10.020
  16. Collier, A. K., Wolf, D. H., Valdez, J. N., Turetsky, B. I., Elliott, M. A., Gur, R. E., & Gur, R. C. (2014). Comparison of auditory and visual oddball fMRI in schizophrenia. Schizophrenia Research, 158, 183-188. https://doi.org/10.1016/j.schres.2014.06.019
  17. Cutini, S., Scatturin, P., Menon, E., Bisiacchi, P. S., Gamberini, L., Zorzi, M., & Dell'Acqua, R. (2008). Selective activation of the superior frontal gyrus in task-switching: An event-related fNIRS study. Neuroimage, 42, 945-955. https://doi.org/10.1016/j.neuroimage.2008.05.013
  18. del Re, E. C., Spencer, K. M., Oribe, N., Mesholam-Gately, R. I., Goldstein, J., Shenton, M. E., Petryshen, T., Seidman, L. J., McCarley, R. W., & Niznikiewicz, M. A. (2015). Clinical high risk and first episode schizophrenia: Auditory event-related potentials. Psychiatry Research, 231, 126-133. https://doi.org/10.1016/j.pscychresns.2014.11.012
  19. Demiralp, T., Ucok, A., Devrim, M., Isoglu-Alkac, U., Tecer, A., & Polich, J. (2002). N2 and P3 components of event-related potential in first-episode schizophrenic patients: Scalp topography, medication, and latency effects. Psychiatry Research, 111, 167-179. https://doi.org/10.1016/S0165-1781(02)00133-6
  20. Donchin, E., & Coles, M. G. (1988). Is the P300 component a manifestation of context updating?. Behavioral and Brain Sciences, 11, 357-374. https://doi.org/10.1017/S0140525X00058027
  21. Earls, H. A., Curran, T., & Mittal, V. (2016). A meta-analytic review of auditory event-related potential components as endophenotypes for schizophrenia: Perspectives from first-degree relatives. Schizophrenia Bulletin, 42, 1504-1516. https://doi.org/10.1093/schbul/sbw047
  22. Fang, Y., Daly, J. J., Hansley, J., Yao, W. X., Yang, Q., Sun, J., et al. (2015). Hemispheric activation during planning and execution phases in reaching post stroke: a consort study. Medicine (Baltimore), 94, e307. https://doi.org/10.1097/MD.0000000000000307
  23. First, M. B., Spitzer, R. L., Gibbson, M., & Williams, J. B. W. (1996). Structured clinical interview for DSM-IV axis I disorder. New York: New York State Psychiatric Institute.
  24. Ford, J. M. (1999). Schizophrenia: The broken P300 and beyond. Psychophysiology, 36, 667-682. https://doi.org/10.1111/1469-8986.3660667
  25. Fusar-Poli, P., Crossley, N., Woolley, J., Carletti, F., Perez-Iglesias, R., Broome, M., Johns, L., Tabraham, P., Bramon, E., & McGuire, P. (2011). Gray matter alterations related to P300 abnormalities in subjects at high risk for psychosis: Longitudinal MRI-EEG study. Neuroimage, 55, 320-328. https://doi.org/10.1016/j.neuroimage.2010.11.075
  26. Gassab, L., Mechri, A., Dogui, M., Gaha, L., d'Amato, T., Dalery, J., & Saoud, M. (2006). Abnormalities of auditory event-related potentials in students with high scores on the schizotypal personality questionnaire. Psychiatry Research, 144, 117-122. https://doi.org/10.1016/j.psychres.2004.09.010
  27. Goel, M. K., Chavarriaga, J., & Millan, J. d. R. (2011). Cortical current density vs. surface EEG for event-related potential-based brain-computer interface. Neural Engineering (NER), 2011 5th International IEEE/EMBS Conference on, 430-433.
  28. Goghari, V. M., Sponheim, S. R., & MacDonald, A. W. (2010). The functional neuroanatomy of symptom dimensions in schizophrenia: A qualitative and quantitative review of a persistent question. Neuroscience and Biobehavioral Reviews, 34, 468-486. https://doi.org/10.1016/j.neubiorev.2009.09.004
  29. Grady, C. L., Yu, H., & Alain, C. (2008). Age-related differences in brain activity underlying working memory for spatial and nonspatial auditory information. Cerebral Cortex, 18, 189-199. https://doi.org/10.1093/cercor/bhm045
  30. Guo, Q., Tang, Y., Li, H., Zhang, T., Li, J., Sheng, J., Liu, D., Li, C., & Wang, J. (2014). Both volumetry and functional connectivity of heschl's gyrus are associated with auditory P300 in first episode schizophrenia. Schizophrenia Research, 160, 57-66. https://doi.org/10.1016/j.schres.2014.10.006
  31. Gur, R. E., Turetsky, B. I., Loughead, J., Snyder, W., Kohler, C., Elliott, M., Pratiwadi, R., Ragland, J. D., Bilker, W. B., Seigei, S. J., Kanes, S. J., Arnold, S. E., & Gur, R. C. (2007). Visual attention circuitry in schizophrenia investigated with oddball event-related functional magnetic resonance imaging. The American Journal of Psychiatry, 164, 442-449. https://doi.org/10.1176/ajp.2007.164.3.442
  32. Higashima, M., Nagasawa, T., Kawasaki, Y., Oka, T., Sakai, N., Tsukada, T., & Koshino, Y. (2003). Auditory P300 amplitude as a state marker for positive symptoms in schizophrenia: Cross-sectional and retrospective longitudinal studies. Schizophrenia Research, 59, 147-157. https://doi.org/10.1016/S0920-9964(01)00397-8
  33. Higashima, M., Tsukada, T., Nagasawa, T., Oka, T., Okamoto, T., Okamoto, Y., & Koshino, Y. (2007). Reduction in event-related alpha attenuation during performance of an auditory oddball task in schizophrenia. International Journal of Psychophysiology, 65, 95-102. https://doi.org/10.1016/j.ijpsycho.2007.03.008
  34. Higuchi, Y., Sumiyoshi, T., Kawasaki, Y., Matsui, M., Arai, H., & Kurachi, M. (2008). Electrophysiological basis for the ability of olanzapine to improve verbal memory and functional outcome in patients with schizophrenia: A LORETA analysis of P300. Schizophrenia Research, 101, 320-330. https://doi.org/10.1016/j.schres.2008.01.020
  35. Huang, P., Xi, Y., Lu, Z. L., Chen, Y., Li, X., Li, W., Zhu, X., Cui, L. B., Tan, Q., Liu, W., Li, C., Miao, D., & Yin, H. (2015). Decreased bilateral thalamic gray matter volume in first-episode schizophrenia with prominent hallucinatory symptoms: A volumetric MRI study. Scientific Reports, 5, 14505. https://doi.org/10.1038/srep14505
  36. Huppertz, H. J., Hoegg, S., Sick, C., Lucking, C. H., Zentner, J., Schulze-Bonhage, A., & Kristeva-Feige, R. (2001). Cortical current density reconstruction of interictal epileptiform activity in temporal lobe epilepsy. Clinical Neurophysiology, 112, 1761-1772. https://doi.org/10.1016/S1388-2457(01)00588-0
  37. Jang, K. M., & Kim, M. S. (2014). Relationships among event-related potentials, memory, and schizophrenic symptoms in college students with schizotypal-traits. Open Journal of Psychiatry, 4, 353-363. https://doi.org/10.4236/ojpsych.2014.44041
  38. Jausovec, N., & Jausovec, K. (2009). Do women see things differently than men do?. Neuroimage, 45, 198-207. https://doi.org/10.1016/j.neuroimage.2008.11.013
  39. Javitt, D. C., Spencer, K. M., Thaker, G. K., Winterer, G., & Hajos, M. (2008). Neurophysiological biomarkers for drug development in schizophrenia. Nature Reviews Drug Discovery, 7, 68-83. https://doi.org/10.1038/nrd2463
  40. Jeon, Y. W., & Polich, J. (2001). P300 asymmetry in schizophrenia: A meta-analysis. Psychiatry Research, 104, 61-74. https://doi.org/10.1016/S0165-1781(01)00297-9
  41. Jeon, Y. W., & Polich, J. (2003). Meta-analysis of P300 and schizophrenia: Patients, paradigms, and practical implications. Psychophysiology, 40, 684-701. https://doi.org/10.1111/1469-8986.00070
  42. Jung, H. T., Kim, D. W., Kim, S., Im, C. H., & Lee, S. H. (2012). Reduced source activity of event-related potentials for affective facial pictures in schizophrenia patients. Schizophrenia Research, 136, 150-159. https://doi.org/10.1016/j.schres.2011.10.023
  43. Kawasaki, Y., Sumiyoshi, T., Higuchi, Y., Ito, T., Takeuchi, M., & Kurachi, M. (2007). Voxel-based analysis of P300 electrophysiological topography associated with positive and negative symptoms of schizophrenia. Schizophrenia Research, 94, 164-171. https://doi.org/10.1016/j.schres.2007.04.015
  44. Kiehl, K. A., Laurens, K. R., Duty, T. L., Forster, B. B., & Liddle, P. F. (2001). Neural sources involved in auditory target detection and novelty processing: An event-related fMRI study. Psychophysiology, 38, 133-142. https://doi.org/10.1111/1469-8986.3810133
  45. Kiehl, K. A., & Liddle, P. F. (2001). An event-related functional magnetic resonance imaging study of an auditory oddball task in schizophrenia. Schizophrenia Research, 48, 159-171. https://doi.org/10.1016/S0920-9964(00)00117-1
  46. Kiehl, K. A., Stevens, M. C., Celone, K., Kurtz, M., & Krystal, J. H. (2005). Abnormal hemodynamics in schizophrenia during an auditory oddball task. Biological Psychiatry, 57, 1029-1040. https://doi.org/10.1016/j.biopsych.2005.01.035
  47. Kim, J. J., Crespo-Facorro, B., Andreasen, N. C., O'Leary, D. S., Magnotta, V., & Nopoulos, P. (2003). Morphology of the lateral superior temporal gyrus in neuroleptic nai;ve patients with schizophrenia: Relationship to symptoms. Schizophrenia Research, 60, 173-181.
  48. Kim, D. W., Shim, M., Kim, J. I., Im, C. H., & Lee, S. H. (2014). Source activation of P300 correlates with negative symptom severity in patients with schizophrenia. Brain Topography, 27, 307-317. https://doi.org/10.1007/s10548-013-0306-x
  49. Kim, M. S., Kang, S. S., Youn, T., Kang, D. H., Kim, J. J., & Kwon, J. S. (2003). Neuropsychological correlates of P300 abnormalities in patients with schizophrenia and obsessive-compulsive disorder. Psychiatry Research, 123, 109-123. https://doi.org/10.1016/S0925-4927(03)00045-3
  50. Kim, M. S., Oh, S. H., Hong, M. H., & Choi, D. B. (2011). Neuropsychologic profile of college students with schizotypal traits. Comprehensive Psychiatry, 52, 511-516. https://doi.org/10.1016/j.comppsych.2010.10.010
  51. Kim, S. H., Jang, K. M., & Kim, M. S. (2015). Deficits in error-monitoring by college students with schizotypal traits: An event-related potential study. PLoS One, 10, e0122861. https://doi.org/10.1371/journal.pone.0122861
  52. Kogoj, A., Pirtosek, Z., Tomori, M., & Vodusek, D. B. (2005). Event-related potentials elicited by distractors in an auditory oddball paradigm in schizophrenia. Psychiatry Research, 137, 49-59. https://doi.org/10.1016/j.psychres.2005.07.017
  53. Kutas, M., McCarthy, G., & Donchin, E. (1977). Augmenting mental chronometry: The P300 as a measure of stimulus evaluation time. Science, 197, 792-795. https://doi.org/10.1126/science.887923
  54. Lazzaro, I., Anderson, J., Gordon, E., Clarke, S., Leong, J., & Meares, R. (1997). Single trial variability within the P300 (250-500 ms) processing window in adolescents with attention deficit hyperactivity disorder. Psychiatry Research, 73, 91-101. https://doi.org/10.1016/S0165-1781(97)00107-8
  55. Linden, D. E. (2005). The p300: Where in the brain is it produced and what does it tell us?. Neuroscientist, 11, 563-576. https://doi.org/10.1177/1073858405280524
  56. Liu, Z., Tam, W. C., Xue, Z., Yao, S., & Wu, D. (2004). Positive and negative symptom profile schizophrenia and abnormalities in the P300 component of the event-related potential: A longitudinal controlled study. Psychiatry Research, 132, 131-139. https://doi.org/10.1016/j.pscychresns.2004.03.003
  57. Luck, S. J. (2014). An introduction to the event-related potential technique (2nd ed.). Cambridge, MA: MIT press.
  58. Mannan, M. R., Hiramatsu, K. I., Hokama, H., & Ohta, H. (2001). Abnormalities of auditory event-related potentials in students with schizotypal personality disorder. Psychiatry and Clinical Neurosciences, 55, 451-457. https://doi.org/10.1046/j.1440-1819.2001.00889.x
  59. Martin-Loeches, M., Molina, V., Munoz, F., Hinojosa, J. A., Reig, S., Desco, M., Benito, C., Sanz, J., Gabiri, A., Sarramea, F., Santos, A., & Palomo, T. (2001). P300 amplitude as a possible correlate of frontal degeneration in schizophrenia. Schizophrenia Research, 49, 121-128. https://doi.org/10.1016/S0920-9964(00)00125-0
  60. Mathalon, D. H., Ford, J. M., Rosenbloom, M., & Pfefferbaum, A. (2000). P300 reduction and prolongation with illness duration in schizophrenia. Biological Psychiatry, 47, 413-427. https://doi.org/10.1016/S0006-3223(99)00151-1
  61. Mathalon, D. H., Hoffman, R. E., Watson, T. D., Miller, R. M., Roach, B. J., & Ford, J. M. (2010). Neurophysiological distinction between schizophrenia and schizoaffective disorder. Frontiers in Human Neuroscience, 3, 70.
  62. McCarley, R. W., Salisbury, D. F., Hirayasu, Y., Yurgelun-Todd, D. A., Tohen, M., Zarate, C., Kikinis, R., Jolesz, F. A., & Shenton, M. E. (2002). Association between smaller left posterior superior temporal gyrus volume on magnetic resonance imaging and smaller left temporal P300 amplitude in first-episode schizophrenia. Archives of General Psychiatry, 59, 321-331. https://doi.org/10.1001/archpsyc.59.4.321
  63. Menon, V., Ford, J. M., Lim, K. O., Glover, G. H., & Pfefferbaum, A. (1997). Combined event-related fMRI and EEG evidence for temporal-parietal cortex activation during target detection. Neuroreport, 8, 3029-3037. https://doi.org/10.1097/00001756-199709290-00007
  64. Nestor, L., Roberts, G., Garavan, H., & Hester, R. (2008). Deficits in learning and memory: Parahippocampal hyperactivity and frontocortical hypoactivity in cannabis users. Neuroimage, 40, 1328-1339. https://doi.org/10.1016/j.neuroimage.2007.12.059
  65. Niznikiewicz, M. A., Voglmaier, M. M., Shenton, M. E., Dickey, C. C., Seidman, L. J., The, E. et al. 2000. Lateralized P3 deficit in schizotypal personality disorder. Biological Psychiatry, 48, 402-705.
  66. Noguchi, H., Hori, H., & Kunugi, H. (2008). Schizotypal traits and cognitive function in healthy adults. Psychiatry Research, 161, 162-169. https://doi.org/10.1016/j.psychres.2007.07.023
  67. Novick, J. M., Trueswell, J. C., & Thompson-Schill, S. L. (2005). Cognitive control and parsing: Reexamining the role of broca's area in sentence comprehension. Cognitive, Affective & Behavioral Neuroscience, 5, 263-281. https://doi.org/10.3758/CABN.5.3.263
  68. Oribe, N., Hirano, Y., Kanba, S., Del Re, E., Seidman, L., Mesholam-Gately, R., Goldstein, J. M., Shenton, M., Spencer, K. M., McCarley, R. W., & Niznikiewicz, M. (2015). Progressive reduction of visual P300 amplitude in patients with first-episode schizophrenia: An ERP study. Schizophrenia Bulletin, 41, 460-470. https://doi.org/10.1093/schbul/sbu083
  69. Ozgurdal, S., Gudlowski, Y., Witthaus, H., Kawohl, W., Uhl, I., Hauser, M., Gorynia, I., Gallinat, J., Heinze, M., Heinz, A., & Juckel, G. (2008). Reduction of auditory event-related P300 amplitude in subjects with at-risk mental state for schizophrenia. Schizophrenia Research, 105, 272-278. https://doi.org/10.1016/j.schres.2008.05.017
  70. Pae, J. S., Kwon, J. S., Youn, T., Park, H. J., Kim, M. S., Lee, B., & Park, K. S. (2003). LORETA imaging of P300 in schizophrenia with individual MRI and 128-channel EEG. Neuroimage, 20, 1552-1560. https://doi.org/10.1016/j.neuroimage.2003.08.001
  71. Pascual-Marqui, R. D. (2002). Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods and Findings in Experimental and Clinical Pharmacology, 24, 5-12.
  72. Picton, T. W. (1992). The P300 wave of the human event-related potential. Journal of Clinical Neurophysiology, 9, 456-479. https://doi.org/10.1097/00004691-199210000-00002
  73. Pinal, D., Zurron, M., & Diaz, F. (2014). Effects of load and maintenance duration on the time course of information encoding and retrieval in working memory: From perceptual analysis to post-categorization processes. Frontiers in Human Neuroscience, 8, 165.
  74. Polich, J. (1998). P300 clinical utility and control of variability. Journal of Clinical Neurophysiology, 15, 14-33. https://doi.org/10.1097/00004691-199801000-00004
  75. Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118, 2128-2148. https://doi.org/10.1016/j.clinph.2007.04.019
  76. Polich, J., & Herbst, K. L. (2000). P300 as a clinical assay: Rationale, evaluation, and findings. International Journal of Psychophysiology, 38, 3-19. https://doi.org/10.1016/S0167-8760(00)00127-6
  77. Price, G. W., Michie, P. T., Johnston, J., Innes-Brown, H., Kent, A., Clissa, P., & Jablensky, A. V. (2006). A multivariate electrophysiological endophenotype, from a unitary cohort, shows greater research utility than any single feature in the western australian family study of schizophrenia. Biological Psychiatry, 60, 1-10. https://doi.org/10.1016/j.biopsych.2005.09.010
  78. Qiu, Y. Q., Tang, Y. X., Chan, R. C., Sun, X. Y., & He, J. (2014). P300 aberration in first-episode schizophrenia patients: A meta-analysis. PLoS One, 9, e97794. https://doi.org/10.1371/journal.pone.0097794
  79. Raine, A. (1991). The SPQ: A scale for the assessment of schizotypal personality based on DSM-III-R criteria. Schizophrenia Bulletin, 17, 555-564. https://doi.org/10.1093/schbul/17.4.555
  80. Renoult, L., Prevost, M., Brodeur, M., Lionnet, C., Joober, R., Malla, A., & Debruille, J. B. (2007). P300 asymmetry and positive symptom severity: A study in the early stage of a first episode of psychosis. Schizophrenia Research, 93, 366-373. https://doi.org/10.1016/j.schres.2007.03.024
  81. Sabeti, M., Moradi, E., & Katebi, S. (2011). Analysis of neural sources of p300 event-related potential in normal and schizophrenic participants. Advances in Experimental Medicine and Biology, 696, 589-597.
  82. Salisbury, D. F., Shenton, M. E., Sherwood, A. R., Fischer, I. A., Yurgelun-Todd, D. A., Tohen, M., & McCarley, R. W. (1998). First-episode schizophrenic psychosis differs from first-episode affective psychosis and controls in P300 amplitude over left temporal lobe. Archives of General Psychiatry, 55, 173-180. https://doi.org/10.1001/archpsyc.55.2.173
  83. Salisbury, D. F., Voglmaier, M. M., Sediman, L. J., & McCarley R. W. (1996). Topographic abnormalities of P3 in schizotypal personality disorder. Biological Psychiatry, 40, 165-172. https://doi.org/10.1016/0006-3223(95)00373-8
  84. Shin, Y. W., Krishnan, G., Hetrick, W. P., Brenner, C. A., Shekhar, A., Malloy, F. W., & O'Donnell, B. F. (2010). Increased temporal variability of auditory event-related potentials in schizophrenia and schizotypal personality disorder. Schizophrenia Research, 124, 110-118. https://doi.org/10.1016/j.schres.2010.08.008
  85. Siever, L. J., & Davis, K. L. (2004). The pathophysiology of schizophrenia disorders: Perspectives from the spectrum. The American Journal of Psychiatry, 161, 398-413. https://doi.org/10.1176/appi.ajp.161.3.398
  86. Sliverstein, A. B. (1989). Agreement between a short form and the full scale as a function of the correlation between them. Journal of Clinical Psychology, 45, 929-931. https://doi.org/10.1002/1097-4679(198911)45:6<929::AID-JCLP2270450616>3.0.CO;2-C
  87. Soltani, M., & Knight, R. T. (2000). Neural origins of the P300. Critical Reviews in Neurobiology, 14, 199-224.
  88. Stevens, A. A., Skudlarski, P., Gatenby, J. C., & Gore, J. C. (2000). Event-related fMRI of auditory and visual oddball tasks. Magnetic Resonance Imaging, 18, 495-502. https://doi.org/10.1016/S0730-725X(00)00128-4
  89. Swick, D., Ashley, V., & Turken, A. U. (2008). Left inferior frontal gyrus is critical for response inhibition. BMC Neuroscience, 9, 102. doi:10.1186/1471-2202-9-102
  90. Tanaka, S., Honda, M., & Sadato, N. (2005). Modality-specific cognitive function of medial and lateral human brodmann area 6. Journal of Neuroscience, 25, 496-501. https://doi.org/10.1523/JNEUROSCI.4324-04.2005
  91. Tang, J., Liao, Y., Zhou, B., Tan, C., Liu, W., Wang, D., Liu, T., Hao, W., Tan, L., & Chen, X. (2012). Decrease in temporal gyrus gray matter volume in first-episode, early onset schizophrenia: An MRI study. PLoS One, 7, e40247. https://doi.org/10.1371/journal.pone.0040247
  92. Trestman, R, L., Horvath, T., Kalus, O., Peterson, A, E., Mitropoulou, V., et al. 1996. Event-related potentials in schizotypal personality disorder. Journal of Neuropsychiatry and Clinical Neurosciences, 8, 33-40. https://doi.org/10.1176/jnp.8.1.33
  93. Turetsky, B. I., Colbath, E. A., & Gur, R. E. (1998). P300 subcomponent abnormalities in schizophrenia: I. physiological evidence for gender and subtype specific differences in regional pathology. Biological Psychiatry, 43, 84-96. https://doi.org/10.1016/S0006-3223(97)00258-8
  94. van der Stelt, O., & Belger, A. (2007). Application of electroencephalography to the study of cognitive and brain functions in schizophrenia. Schizophrenia Bulletin, 33, 955-970. https://doi.org/10.1093/schbul/sbm016
  95. van Lutterveld, R., Diederen, K. M., Koops, S., Begemann, M. J., & Sommer, I. E. (2013). The influence of stimulus detection on activation patterns during auditory hallucinations. Schizophrenia Research, 145, 27-32. https://doi.org/10.1016/j.schres.2013.01.004
  96. van Tricht, M. J., Nieman, D. H., Koelman, J. H., van der Meer, J. N., Bour, L. J., de Haan, L., & Linszen, D. H. (2010). Reduced parietal P300 amplitude is associated with an increased risk for a first psychotic episode. Biological Psychiatry, 68, 642-648. https://doi.org/10.1016/j.biopsych.2010.04.022
  97. Vita, A., De Peri, L., Deste, G., & Sacchetti, E. (2012). Progressive loss of cortical gray matter in schizophrenia: A meta-analysis and meta-regression of longitudinal MRI studies. Translational Psychiatry, 2, e190. https://doi.org/10.1038/tp.2012.116
  98. Volpe, U., Mucci, A., Bucci, P., Merlotti, E., Galderisi, S., & Maj, M. (2007). The cortical generators of P3a and P3b: A LORETA study. Brain Research Bulletin, 73, 220-230. https://doi.org/10.1016/j.brainresbull.2007.03.003
  99. Wang, J., & Guo, Q. (2012). Research in china on event-related potentials in patients with schizophrenia. Shanghai Archives of Psychiatry, 24, 67-75.
  100. Wang, J., Hiramatsu, K., Hokama, H., Miyazato, H., & Ogura, C. (2003). Abnormalities of auditory P300 cortical current density in patients with schizophrenia using high density recording. International Journal of Psychophysiology, 47(3), 243-253. https://doi.org/10.1016/S0167-8760(02)00157-5
  101. Wang, J., Hirayasu, Y., Hokama, H., Tanaka, S., Kondo, T., Zhang, M., & Xiao, Z. (2005). Influence of duration of untreated psychosis on auditory P300 in drug-naive and first-episode schizophrenia. Psychiatry and Clinical Neurosciences, 59, 209-214. https://doi.org/10.1111/j.1440-1819.2005.01360.x
  102. Wang, J., Tang, Y., Li, C., Mecklinger, A., Xiao, Z., Zhang, M., Hirayasu, Y., Hokama, H., & Li, H. (2010). Decreased P300 current source density in drug-naive first episode schizophrenics revealed by high density recording. International Journal of Psychophysiology, 75, 249-257. https://doi.org/10.1016/j.ijpsycho.2009.12.005
  103. Wolf, D. H., Turetsky, B. I., Loughead, J., Elliott, M. A., Pratiwadi, R., Gur, R. E., & Gur, R. C. (2008). Auditory oddball fMRI in schizophrenia: Association of negative symptoms with regional hypoactivation to novel distractors. Brain Imaging and Behavior, 2, 132-145. https://doi.org/10.1007/s11682-008-9022-7
  104. Wronka, E., Kaiser, J., & Coenen, A. M. (2008). The auditory P3 from passive and active three-stimulus oddball paradigm. Acta Neurobiologiae Experimentalis, 68, 362-372.
  105. Wronka, E., Kaiser, J., & Coenen, A. M. (2012). Neural generators of the auditory evoked potential components P3a and P3b. Acta Neurobiologiae Experimentalis, 72, 51-64.
  106. Wronka, E., Kuniecki, M., Kaiser, J., & Coenen, A. M. (2007). The P3 produced by auditory stimuli presented in a passive and active condition: Modulation by visual stimuli. Acta Neurobiologiae Experimentalis, 67, 155-164.
  107. Wynn, J. K., Jimenez, A. M., Roach, B. J., Korb, A., Lee, J., Horan, W. P., Ford, J. M., & Green, M. F. (2015). Impaired target detection in schizophrenia and the ventral attentional network: Findings from a joint event-related potential-functional MRI analysis. NeuroImage: Clinical, 9, 95-102. https://doi.org/10.1016/j.nicl.2015.07.004
  108. Yao, J., & Dewald, J. P. (2005). Evaluation of different cortical source localization methods using simulated and experimental EEG data. Neuroimage, 25, 369-382. https://doi.org/10.1016/j.neuroimage.2004.11.036
  109. Yung, A. R., Phillips, L. J., Yuen, H. P., Francey, S. M., McFarlane, C. A., Hallgren, M., & McGorry, P. D. (2003). Psychosis prediction: 12-month follow up of a high-risk ("prodromal") group. Schizophrenia Research, 60, 21-32.
  110. Zatorre, R. J., Evans, A. C., & Meyer, E. (1994). Neural mechanisms underlying melodic perception and memory for pitch. Journal of Neuroscience, 14, 1908-1919. https://doi.org/10.1523/JNEUROSCI.14-04-01908.1994
  111. Zatorre, R. J., Perry, D. W., Beckett, C. A., Westbury, C. F., & Evans, A. C. (1998). Functional anatomy of musical processing in listeners with absolute pitch and relative pitch. Proceedings of the National Academy of Sciences of the United States of America, 95, 3172-3177. https://doi.org/10.1073/pnas.95.6.3172