DOI QR코드

DOI QR Code

Development of High Cordycepin-Producing Cordyceps militaris Strains

  • Kang, Naru (Department of Microbiology, Pusan National University) ;
  • Lee, Hyun-Hee (Department of Microbiology, Pusan National University) ;
  • Park, Inmyoung (Department of Asian Food and Culinary Arts, Youngsan University) ;
  • Seo, Young-Su (Department of Microbiology, Pusan National University)
  • 투고 : 2017.01.17
  • 심사 : 2017.03.15
  • 발행 : 2017.03.01

초록

Cordyceps militaris, known as Dong-Chong-Xia-Cao, produces the most cordycepin among Cordyceps species and can be cultured artificially. For these reasons, C. militaris is widely used as herb or functional food in the East Asia. In this study, we developed a new strain of C. militaris that produces higher cordycepin content than parent strains through mating-based sexual reproduction. Twenty parent strains were collected and identified as C. militaris based on internal trasncrived spacer and rDNA sequences. Seven single spores of MAT 1-1 idiomorph and five single spores of MAT 1-2 idiomorph were isolated from 12 parent strains. When 35 combinations were mated on the brown rice medium with the isolated single spores, eight combinations formed a stroma with a normal perithecia and confirmed mated strains. High pressure liquid chromatography analysis showed that mated strain KSP8 produced the most cordycepin in all the media among all the tested strains. This result showed due to genetic recombination occurring during the sexual reproduction of C. militaris. The development of C. militaris strain with increased cordycepin content by this approach can help not only to generate new C. militaris strains, but also to contribute to the health food or medicine industry.

키워드

참고문헌

  1. Sung GH, Hywel-Jones NL, Sung JM, Luangsa-ard JJ, Shrestha B, Spatafora JW. Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stud Mycol 2007;57:5-59. https://doi.org/10.3114/sim.2007.57.01
  2. Masuda M, Urabe E, Honda H, Sakurai A, Sakakibara M. Enhanced production of cordycepin by surface culture using the medicinal mushroom Cordyceps militaris. Enzyme Microb Technol 2007;40:1199-205. https://doi.org/10.1016/j.enzmictec.2006.09.008
  3. Hur H. Chemical ingredients of Cordyceps militaris. Mycobiology 2008;36:233-5. https://doi.org/10.4489/MYCO.2008.36.4.233
  4. Liu Y, Wang J, Wang W, Zhang H, Zhang X, Han C. The chemical constituents and pharmacological actions of Cordyceps sinensis. Evid Based Complement Alternat Med 2015;2015:575063.
  5. Tian X, Li Y, Shen Y, Li Q, Wang Q, Feng L. Apoptosis and inhibition of proliferation of cancer cells induced by cordycepin. Oncol Lett 2015;10:595-9. https://doi.org/10.3892/ol.2015.3273
  6. Cho HJ, Cho JY, Rhee MH, Lim CR, Park HJ. Cordycepin (3'-deoxyadenosine) inhibits human platelet aggregation induced by U46619, a TXA2 analogue. J Pharm Pharmacol 2006;58: 1677-82. https://doi.org/10.1211/jpp.58.12.0016
  7. Ramesh T, Yoo SK, Kim SW, Hwang SY, Sohn SH, Kim IW, Kim SK. Cordycepin (3'-deoxyadenosine) attenuates age-related oxidative stress and ameliorates antioxidant capacity in rats. Exp Gerontol 2012;47:979-87. https://doi.org/10.1016/j.exger.2012.09.003
  8. Müller WE, Weiler BE, Charubala R, Pfleiderer W, Leserman L, Sobol RW, Suhadolnik RJ, Schroder HC. Cordycepin analogues of 2',5'-oligoadenylate inhibit human immunodeficiency virus infection via inhibition of reverse transcriptase. Biochemistry 1991;30:2027-33. https://doi.org/10.1021/bi00222a004
  9. Zhou X, Cai G, He Y, Tong G. Separation of cordycepin from Cordyceps militaris fermentation supernatant using preparative HPLC and evaluation of its antibacterial activity as an NAD(+)-dependent DNA ligase inhibitor. Exp Ther Med 2016;12:1812-6. https://doi.org/10.3892/etm.2016.3536
  10. Lin Q, Long L, Wu L, Zhang F, Wu S, Zhang W, Sun X. Evaluation of different agricultural wastes for the production of fruiting bodies and bioactive compounds by medicinal mushroom Cordyceps militaris. J Sci Food Agric 2016 Nov 29 [Epub]. https://doi.org/10.1002/jsfa.8097.
  11. Zheng P, Xia Y, Xiao G, Xiong C, Hu X, Zhang S, Zheng H, Huang Y, Zhou Y, Wang S, et al. Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine. Genome Biol 2011;12:R116. https://doi.org/10.1186/gb-2011-12-11-r116
  12. Shrestha B, Kim HK, Sung GH, Spatafora JW, Sung JM. Bipolar heterothallism, a principal mating system of Cordyceps militaris in vitro. Biotechnol Bioprocess Eng 2004;9:440-6. https://doi.org/10.1007/BF02933483
  13. Yokoyama E, Arakawa M, Yamagishi K, Hara A. Phylogenetic and structural analyses of the mating-type loci in Clavicipitaceae. FEMS Microbiol Lett 2006;264:182-91. https://doi.org/10.1111/j.1574-6968.2006.00447.x
  14. Benkhali JA, Coppin E, Brun S, Peraza-Reyes L, Martin T, Dixelius C, Lazar N, van Tilbeurgh H, Debuchy R. A network of HMG-box transcription factors regulates sexual cycle in the fungus Podospora anserina. PLoS Genet 2013;9:e1003642. https://doi.org/10.1371/journal.pgen.1003642
  15. Hong W, Jing W, Nan L, Aiping F, MingJie C, DaPeng B. Distribution of mating-type genes in fruiting and non-fruiting forms of Cordyceps militaris. Shi Yong Jun Xue Bao 2010;17:1-4.
  16. Che Z, Wang Y, Zhou L, Tang C. Study on the breeding of a new variety of Cordyceps militaris by mutated with ultraviolet radiation. Food Ferment Ind 2004;30:35-8.
  17. Das SK, Masuda M, Hatashita M, Sakurai A, Sakakibara M. A new approach for improving cordycepin productivity in surface liquid culture of Cordyceps militaris using high-energy ion beam irradiation. Lett Appl Microbiol 2008;47:534-8. https://doi.org/10.1111/j.1472-765X.2008.02456.x
  18. Doyle J. DNA protocols for plants. In: Hewitt GM, Johnston AW, Young JP, editors. Molecular techniques in taxonomy. Berlin: Springer; 1991. p.283-93.
  19. Wang L, Zhang WM, Hu B, Chen YQ, Qu LH. Genetic variation of Cordyceps militaris and its allies based on phylogenetic analysis of rDNA ITS sequence data. Fungal Divers 2008;31:147-55.
  20. Tan Q, Cai T, Wei J, Feng A, Mao W, Bao D. Molecular identification of mating type genes in asexual spoeres of Cordyceps militalis. In: Proceedings of the 7th International Conference on Mushroom Biology and Mushroom Products;2011 Oct 4-7; Arcachon, France. Paris: Institute National de la Recherche Agronomique (INRA); 2011. p. 52-6.
  21. Shrestha B, Park YJ, Han SK, Choi SK, Sung JM. Instability in in vitro fruiting of Cordyceps militaris. J Mushroom Sci Prod 2004;2:140-4.
  22. Butt TM, Wang C, Shah FA, Hall R. Degeneration of entomogenous fungi. In: Eilenberg J, Hokkanen HM, editors. An ecological and societal approach to biological control. Dordrecht: Springer; 2006. p. 213-26.
  23. Cho SM, Park HJ, Seo GS, Hong JD. Effect of medis composition on the cordycepin and content nutritional components of Cordyceps militaris. Kor J Mycol 2009;37:161-6. https://doi.org/10.4489/KJM.2009.37.2.161
  24. Wen TC, Kang JC, Hyde KD, Li GR, Kang C, Chen X. Phenotypic marking of Cordyceps militaris fruiting-bodies and their cordycepin production. Chiang Mai J Sci 2014;41:846-57.