Fish Farm Performance of Copper-alloy Net Cage: Biological Safety of Red Sea Bream Pagrus major Rearing the Copper-alloy Net Cage

동합금가두리망에서 사육한 참돔, Pagrus major의 생물학적 안전성

  • 신윤경 (국립수산과학원 남동해수산연구소) ;
  • 김원진 (국립수산과학원 남동해수산연구소) ;
  • 전제천 (국립수산과학원 전략양식연구부 양식관리과) ;
  • 차봉진 (국립수산과학원 시스템공학과) ;
  • 김명석 (국립수산과학원 병리연구과) ;
  • 박정준 (국립수산과학원 남해수산연구소)
  • Received : 2016.10.07
  • Accepted : 2017.01.20
  • Published : 2017.03.31

Abstract

To understand the application in farm for the fish aquaculture, we investigated biological and pathological traits on red sea bream Pagrus major which were reared in each copper-alloy net cage and the synthetic fiber net cage for 9 months. Two groups of cage were made and set in Yokji-eup, Tongyoung, Gyeongsangnam-do in size of 25 m in diameter and 10 m of depth. Survival rate of the red sea bream in the rearing copper-alloy net cage and synthetic fiber cage showed 99.75% and 99.70% respectively, there was no significant difference. Daily weight growth rate in each net was shown to 2.13 g/day and 1.65 g/day. Health analysis by blood composition analysis showed a favorable result in the copper-alloy net cage rather than in the synthetic fiber net. Bioaccumulation of heavy metal such as Cu and Zn especially in gonad was higher than other organ. Bioaccumulation of Cu and Zn in the muscle was lower compared to the permitted standard for food safety. Pathogenic infection test discovered Microcotyle tai for parasite, V. alginolyticus and other five species for bacteria. But there was a little bit difference of bacteria infection in copper-alloy net cage and copper-alloy net cage is expected to be has antibacterial effect. Thus, copper-alloy net cage can be applied to farm considering its system stability, recycling, antibiosis and food safety.

어류양식용 가두리로서 동합금가두리망의 현장활용 가능성을 파악하기 위해 양식어류인 2년산 참돔을 동합금망과 합성섬유망에서 9개월 동안 각각 사육관리하면서 참돔에 미치는 양식생물학적 및 병리학적 영향을 조사하여 생물학적 안전성을 평가하였다. 동합금가두리망은 지름 25 m, 깊이 10 m의 규모로 제작하여 경남 통영시 욕지면 주변해역 연구교습어장에 설치하였다. 동합금가두리망과 합성섬유망에서 사육한 참돔의 생존율은 각각 99.75%와 99.70%로 유의한 차이는 나타나지 않았다. 일일체중성장률은 동합금가두리망과 합성섬유망에서 각각 2.13 g/day와 1.65 g/day로 동합금가두리망에서 사육한 참돔의 성장률이 빠른 것으로 나타났다. 혈액성분 분석에 따른 건강도 평가는 합성섬유망에 비해 동합금가두리망에서 양호한 것으로 나타났다. 가두리망 종류별 사육중인 참돔의 구리와 아연의 축적은 다른 기관에 비해 생식소에서 축적이 높게 나타났으며, 가용부분인 근육내 중금속 축적은 허용기준치에 비해 매우 낮았다. 또한 병원체 감염조사결과 동합금가두리망과 합성섬유망에서 기생충은 Microcotyle tai, 세균은 Vibrio alginolyticus 외 5종 등이 공통적으로 관찰되었으나, 동합금가두리망에서 Vibrio속의 세균 감염률에는 다소 차이를 보여 항균작용이 있을 것으로 예상된다. 따라서 동합금가두리망의 시스템안정성, 재활용가능성, 항균성 및 식품안전성 등을 고려할 때 어류양식용 가두리로 현장에서 활용이 가능할 것으로 여겨진다.

Keywords

References

  1. Bradley, R.W. and J.B. Sprague. 1985. The influence of pH, water hardness, and alkalinity on the acute lethality of zinc to rainbow trout (Salmo gairdneri). Can. J. Fish. Aquat. Sci., 42: 731-736. https://doi.org/10.1139/f85-094
  2. Cha, B.J., H.Y. Kim, J.H. Bae, Y.S. Yang and D.H. Kim. 2013. Analysis of the hydrodynamic characteristics of chain-link woven copper alloy nets for fish cages. Aquacult. Eng., 56: 79-85. https://doi.org/10.1016/j.aquaeng.2013.05.002
  3. Chi, Q.-Q., G.-W. Zhu and A. Langdon. 2007. Bioaccumulation of heavy metals in fishes from Taihu Lake, China. Environ. Sci., 19: 1500-1504. https://doi.org/10.1016/S1001-0742(07)60244-7
  4. Cousins, R.J. 1985. Absorption, transport, and hepatic metabolism of copper and zinc: special reference to metallothionein and ceruloplasmin. Physiol. Rew., 65: 238-309.
  5. FAO/WHO. 2010. Joint FAO/WHO Expert Committee on Food Additives, Summary report of the seventy-third meeting of JECFA in the WHO Technical Report Series, Geneva, Switzerland, pp. 12-13.
  6. Hebel, D.K., M.B. Jones and M.H. Depledge. 1997. Responses of crustaceans to contaminant exposure: a holistic approach. Estuarine Coast. Shelf Sci., 44: 177-184. https://doi.org/10.1006/ecss.1996.0209
  7. Ito, Y. and T. Murata. 1990. Changes in glucose, protein contents and enzyme activities of serum in carp administered orally with PCB. Bull. Jap. Soc. Sci. Fish., 46: 465-468.
  8. Kim, S.Y. and T.Y. Lee. 1988. The effects of pollutants effluent from a steam-power plant on coastal bivalves. Ocean Res., 10: 47-56.
  9. MAFF. 1995. Monitoring and Surveillance of Non-radioactive Contaminants in the Aquatic Environment and Activities Regulating the Disposal of Wastes at Sea, Directorate of Fisheries Research, Lowestoft, Aquatic Environment Monitoring Report No. 44.
  10. Miles, R.D., S.F. O'Keefe and P.R. Henry. 1988. The effect of dietary supplementation with copper sulfate or tribasic copper chloride on broiler performance, relative copper biovaulability, and dietary prooxidant activity. Poultry Science, 77: 416-425.
  11. Mziray, P. and I.A. Kimirei. 2016. Bioaccumulation of heavy metals in marine fishes (Siganus sutor, Lethrinus harak and Rastrelliger kanagurta) from Dar es salaam Tanzania. Regional Studies in Marine Science, 7: 72-80. https://doi.org/10.1016/j.rsma.2016.05.014
  12. O'Dell, B.L. 1976. Biochemistry of copper. Symposium on trace elements. The Medical clinics of North America, 60: 697-703.
  13. Oliva, M., M.C. Garrido, D. Sales Marquez and M.L. Gonzalez de Canales. 2009. Sublethal and lethal toxicity in juvenile Senegal sole (Solea senegalensis) exposed to copper: A preliminary toxicity range-finding test. Exp. Toxicol. Pathol., 61: 113-121. https://doi.org/10.1016/j.etp.2008.06.001
  14. Ortiz, J.B., M.L. Gonzalez de Canales and C. Sarasquete. 1999. Quantification and histopathological alterations produced by sublethal concentrations of copper in Fundulus heteroclitus. Ciencias Marinas, 25: 119-143. https://doi.org/10.7773/cm.v25i1.644
  15. Park, M.A., J.W. Do, M.S. Kim, M.G. Kwon, K.J. Seo, J.Y. Song and H.S. Choi. 2012. Comparison of pathogen detection from wild and cultured olive flounder, red sea bream, black sea bream and black rockfish in the coastal area of Korea in 2010. J. Fish Pathol., 25: 263-270. https://doi.org/10.7847/jfp.2012.25.3.263
  16. Powell, C. and H. Stillman. 2009. Corrosion Behavior of Copper Alloys used in Marine Aquaculture. International Copper Association (ICA), http://www.copper.org/applications/cuni/pdf/marine_aquaculture.pdf (Retrieved October 15. 2010).
  17. Reinfelder, J.R., N.S. Fisher, S.N. Luoma, J.W. Nichols and W.X. Wang. 1998. Trace element trophic transfer in aquatic organisms: a critique of the kinetic model approach. Sci. Total Environ., 219: 117-135. https://doi.org/10.1016/S0048-9697(98)00225-3
  18. Shin, Y.K., J.C. Jun, J.I. Myeong and S.J. Yang. 2014. The survival rate, respiration and heavy metal accumulation of abalone (Haliotis discus hannai) rearing in the different copper alloy composition. Korean J. Malacol. 30: 353-361. https://doi.org/10.9710/kjm.2014.30.4.353
  19. SINTEF report. 2005. Application of brass net cages in Norwegian aquaculture-environmental analysis, Project number 840145.
  20. Spear, P.A. 1981. Zinc in the Aquatic Environment: Chemistry, Distribution, and Toxicology. National Research Council of Canada, NRCC Associate Committee on Scientific Criteria for Environmental Quality, Environmental Secretariat, Ottawa. and subsequent recovery. J. Comp. Physiol., 166: 443-452.
  21. Thomas, P. and L. Robertson. 1991. Plasma cortisol and glucose stress responses of red drum (Sciaenops ocellatus) to handling and shallow water stressors and anesthesia with MS-222, quinaldine sulfate and metomidate. Aquaculture, 96: 69-86. https://doi.org/10.1016/0044-8486(91)90140-3
  22. Turkmen, M., A. Turkmen and Y. Tepe. 2008. Metal contaminations in five fish species from Black, Marmara, Aegean and Mediterranean Seas. Turkey, J. Chilean Chem. Soc., 53: 1435-1439.
  23. Vallee, B.L. and K.H. Falchuk. 1993. The biochemical basis of zinc physiology. Physiological Reviews, 73: 79-118. https://doi.org/10.1152/physrev.1993.73.1.79
  24. Van Raaij, M.T.M., G.E.E.J.M. Van den Thillart, G.J. Vianen, D.S.S. Pit, P.H.M. Balm and A.B. Steffens. 1996. Substrate mobilization and hormonal changes in rainbow trout (Oncorhynchus mykiss L.) and common carp (Cyprinus carpio L.) during deep hypoxia and subsequent recovery. J. Comp. Physi. B., 166: 443-452. https://doi.org/10.1007/BF02337889
  25. Vasanthi, L.A., P. Revathi, C. Arulvasu and N. Munuswamy. 2012. Biomarkers of metal toxicity and histology of Perna viridis from Ennore estuary, Chennai, south east coast of India. Ecotoxicology and Environmental Safety, 84: 92-98. https://doi.org/10.1016/j.ecoenv.2012.06.025
  26. Yang, S.J., J.C. Jun, J.J. Park, J.I. Myeong and Y.K. Shin. 2014. Change of hematological characteristic and heavy metal concentration on rockfish (Sebastes schlegeli) rearing in the copper alloy mesh. Kor. J. Ichthy., 26: 159-170.