능성어 (Epinephelus septemfasciatus) 치어의 생존율과 혈액학적 특성 변화에 미치는 암모니아 노출의 영향

Effects of Ammonia Exposure on Survival Rate and Hematological Characteristics Changes in Juveniles of Sevenband Grouper, Epinephelus septemfasciatus

  • 김정현 (국립수산과학원 양식관리과) ;
  • 박종연 (국립수산과학원 양식관리과) ;
  • 이정용 (국립수산과학원 양식관리과) ;
  • 이진환 (국립수산과학원 양식관리과) ;
  • 황형규 (국립수산과학원 양식관리과) ;
  • 조재권 (국립수산과학원 양식관리과)
  • Kim, Jung Hyun (Aquaculture Management Division, Aquaculture Research Institute, NIFS) ;
  • Park, Jong Youn (Aquaculture Management Division, Aquaculture Research Institute, NIFS) ;
  • Lee, Jeong Yong (Aquaculture Management Division, Aquaculture Research Institute, NIFS) ;
  • Lee, Jin Hwan (Aquaculture Management Division, Aquaculture Research Institute, NIFS) ;
  • Hwang, Hyung Kyu (Aquaculture Management Division, Aquaculture Research Institute, NIFS) ;
  • Cho, Jae Kwon (Aquaculture Management Division, Aquaculture Research Institute, NIFS)
  • 투고 : 2017.01.11
  • 심사 : 2017.03.10
  • 발행 : 2017.03.31

초록

본 연구는 능성어(Epinephelus septemfasciatus)를 해수 순환여과양식시스템(RAS)에 적용하는데 문제가 되는 암모니아의 농도 기준을 제시하기 위하여 96시간 동안 암모니아 노출에 따른 생존율 및 혈액학적 특성 변화를 조사하였다. 생존율 실험구의 암모니아 농도는 대조구, 0.35, 0.4, 0.5, 0.8 mg/L였으며, 96-h $LC_{50}$ 농도는 0.6 mg/L로 나타났다. 능성어 치어의 암모니아 96-h $LC_{50}$ 농도인 0.6 mg/L에서 0, 3, 6, 12, 24, 48, 72, 96시간 간격으로 12마리씩 혈액 샘플링을 하였다. 실험구의 암모니아 노출 시간이 경과할수록 혈장 코티졸, 글루코스, GOT 및 GPT 농도가 증가하는 경향을 보였다. 혈장 암모니아와 총 단백질은 암모니아 노출 12시간째까지는 증가하였고 이후로는 감소하였지만, 대조구와 비교하여 유의하게 높은 값을 나타내었다. 또한 혈장 전해질이온($Na^+$, $Cl^-$)과 삼투압은 감소하는 경향이 관찰되었다.

We investigated that changes of survival rate and hematological factors in sevenband grouper (Epinephelus septemfasciatus), exposed to ammonia. First, the fish was exposed and was observed survival rate. We observed the survival rate of the fish when exposed at each ammonia concentrations (0, 0.35, 0.4, 0.5, 0.8 mg/L, $NH_3$) for 96 hours. The 96-h $LC_{50}$ (lethal ambient concentration for 50% of the population) of $NH_4^+$ and un-ionized ammonia ($NH_3$) for sevenband grouper were 26.7 and 0.6 mg/L, respectively. Secondly, we exposed the fish to 96-h $LC_{50}$ ammonia concentration (0.6 mg/L) for 96 hours, then sampled the blood of groupers for analysis of cortisol, glucose, $NH_3$, GOT, GPT, total protein (TP), electrolytes ($Na^+$, $Cl^-$) and osmolality in plasma. The plasma cortisol, glucose, GOT and GPT were increased with increasing of elapsed time and ammonia concentration. In addition, the $NH_3$ and total protein in plasma were significantly increased to 12 hours exposed to ammonia, and then decreased. But, the values were significantly higher than the control. The plasma electrolytes ($Na^+$, $Cl^-$) and osmolality were decreased with increasing of elasped time. The results in the present study suggest that the continuous exposure of ammonia to juveniles of sevenband grouper may be a stressor and negative influence.

키워드

참고문헌

  1. Barton, B.A. and G.K. Iwama. 1991. Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annu, Rev. Fish. Dis., 1: 3-26. https://doi.org/10.1016/0959-8030(91)90019-G
  2. Biswas, A.K., M. Seoka, K. Ueno, A.S. Yong, B.K. Biswas, Y.S. Kim and H. Kumai. 2008. Growth performance and physiological responses in striped knifejaw, Oplegnathus fasciatus, held under different photoperiods. Aquaculture, 279: 42-46. https://doi.org/10.1016/j.aquaculture.2008.04.007
  3. Chang, Y.J. and J.W. Hur. 1999. Physiological responses of grey mullet (Mugil cephalus) and Nile tilapia (Oreochromis niloticus) by rapid changes in salinity of rearing water. Kor. J. Fish. Aquat. Sci., 32: 310-316. (in Korean)
  4. Chang, Y.J., B.H. Min, H.J. Chang and J.W. Hur. 2002. Comparison of blood physiology in black porgy (Acanthopagrus schlegeli) cultured in converted freshwater from seawater and seawater from freshwater. J. Kor. Fish. Soc., 35: 595-600. (in Korean)
  5. Chang, Y.J., B.H. Min and C.Y. Choi. 2007. Black porgy (Acanthopagrus schlegeli) prolactin cDNA sequence: mRNA expression and blood physiological responses during freshwater acclimation. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 147: 122-128. (in Korean) https://doi.org/10.1016/j.cbpb.2007.01.006
  6. Cho, J.K., C.G. Hong, J.Y. Park, M.H. Son, C.K. Park and J.M. Park. 2015. Effects of water temperature and salinity on the egg development and larvae of sevenband grouper, Epinephelus septemfasciatus. Korean J. Ichthyol., 27: 21-25. (in Korean)
  7. Cho, S.H. and S.B. Hur. 1998. Comparison of acute toxicity of ammonia in juvenile Rockfish and Red sea bream. J. Aquacult., 11: 429-435. (in Korean)
  8. Choi, C.Y., B.H. Min, N.N. Kim, S.H. Cho and Y.J. Chang. 2006. Expression of HSP90, HSP70 mRNA and change of plasma cortisol and glucose during water temperature rising in freshwater adapted black porgy, Acanthopagrus schlegeli. Journal of Aquaculture, 19: 315-322. (in Korean)
  9. Colt, J. and Armstrong. 1981. Nitrogen toxicity to crustacean, fish and Mollusca. In: Allen, L.J. and E.C. Kinney (eds.), Proceeding of the Bio-engineering Symposium for Fish Culture. America Fisheries Society, Bethesda, MD, U.S.A., pp. 34-37.
  10. Dosdat, A., J. Person-Le Ruyet, D. Coves, G. Dutto, E. Gasset, A. Le Roux and G. Lemarie. 2003. Effect of chronic exposure to ammonia on growth, food utilization and metabolism of the European sea bass (Dicentrarchus labrax). Aquat. Living Resour., 16: 509-520. https://doi.org/10.1016/j.aquliv.2003.08.001
  11. Eshchar, M., O. Lahav, N. Mozes, A. Peduel and B. Ron. 2006. Intensive fish culture at high ammonium and low pH. Aquaculture, 255: 301-313. https://doi.org/10.1016/j.aquaculture.2005.11.034
  12. Foss, A., T.H. Siikavuopio, B.S. Saether and T.H. Evensen. 2004. Effect of chronic ammonia exposure on growth in juvenile Atlantic cod. Aquaculture, 237: 179-189. https://doi.org/10.1016/j.aquaculture.2004.03.013
  13. Handy, R.D. and M.G. Poxton. 1993. Nitrogen pollution in mariculture: toxicity and excretion of nitrogenous compounds by marine fish. Reviews in Fish Biology and Fisheries, 3: 205-241. https://doi.org/10.1007/BF00043929
  14. Harikrishnan, R., J.S. Kim, C. Balasundaram and M.S. Heo. 2012. Immunomodulatory effects of chitin and chitosan enriched diets in Epinephelus bruneus against Vibrio alginolyticus infection. Aquaculture, 326-329: 46-52. https://doi.org/10.1016/j.aquaculture.2011.11.034
  15. Hong, C.G., J.K. Cho, J.Y. Park, M.H. Son, J.M. Park, K.H. Han and H.W. Kang. 2015. Ovulation induction effect of sevenband grouper, Epinephelus septemfasciatus by treating hormones. JFMSE, 27: 981-989. (in Korean) https://doi.org/10.13000/JFMSE.2015.27.4.981
  16. Huang, C.Y. and J.C. Chen. 2002. Effects on acid-base balance, methaemoglobinemia and nitrogen excretion of European eel after exposure to elevated ambient nitrite. Journal of fish biology, 61: 712-725. https://doi.org/10.1111/j.1095-8649.2002.tb00906.x
  17. Hutchinson, W., M. Jeffrey, D. O-Sullivan, D. Casement and S. Clark. 2004. Recirculating Aquaculture System Minimum Standard for Design, Construction and Management. South Australia Research and Development Institute.
  18. Ip, Y.K., C.B. Lim, S.F. Chew, J.M. Wilson and D.J. Randall. 2001. Partial amino acid catabolism leading to the formation of alanine in Periophthalmadon schlosseri (mudskipper): a strategy that facilitates the use of amino acids as an energy source during locomotory on land. J. Exp. Biol., 204: 1615-1624.
  19. Jeney, G., J. Nemesok, Z. Jeney and J. Olah. 1992. Acute effect of sublethal ammonia concentrations on common carp (Cyprinus carpio L.) II. Effect of ammonia on blood plasma transaminases (GOT, GPT), GIDH enzyme activity and ATP value. Aquaculture, 104: 149-156. https://doi.org/10.1016/0044-8486(92)90145-B
  20. Jo, S.H. and H.Y. Kim. 2014. Changes in hematological responses and antioxidative enzyme acticities of Japanese eel Anguilla japonica exposed to elevated ambient nitrite. Kor. J. Fish. Aquat. Sci., 47: 860-868. (in Korean)
  21. Kim, B.H., K.M. Kim, Y.D. Lee, C.B. Song and S. Rho. 1997. Reproductive biology of the sevenband grouper, Epinephelus septemfasciatus I. The effect of HCG on ovulation induction. J. Aquacult., 10: 55-61. (in Korean)
  22. Kim, I.S., Y. Choi, C.L. Lee, Y.J. Lee, B.J. Kim and J.H. Kim. 2005. Illustrated book of Korean fishes. Kyo-Hak Publishing Co. Ltd. Seoul, pp. 276-286. (in Korean)
  23. Kim, P.K. 2011. Effects of stocking density and dissolved oxygen concentration on the growth and hematology of the Parrotfish Oplegnathus fasciatus in a recirculating aquaculture system (RAS). Kor. J. Fish. Aquat. Sci., 44: 747-752. (in Korean)
  24. Kim, S.H., J.H. Kim, M.A. Park, S.D. Hwang and J.C. Kang. 2015. The toxic effects of ammonia exposure on antioxidant and immune responses in Rockfish, Sebastes schlegelii during thermal stress. Environmental toxicology and pharmacology, 40: 954-959. (in Korean) https://doi.org/10.1016/j.etap.2015.10.006
  25. Kitajima, C., M. Takaya, Y. Tsukashima and T. Arakawa. 1991. Development of eggs, larvae and juvenile of the grouper, Epinephelus septemfasciatus, reared in the laboratory. Japan J. Ichthyol., 38: 47-55.
  26. Knoph, M.B. and Y.A. Olsen. 1994. Subacute toxicity of ammonia to Atlantic salmon (Salmo salar L.) in seawater: effects on water and salt balance, plasma cortisol and plasma ammonia levels. Aquat. Toxicol., 30: 295-310. https://doi.org/10.1016/0166-445X(94)00046-8
  27. Kohno, H., S. Diani and A. Supriatna. 1993. Morphological development of larval and juvenile grouper, Epinephelus fuscoguttatus. Japan J. Ichthyol., 40: 307-316.
  28. Lang, T., G. Peters, R. Hoffmann and E. Meyer. 1987. Experimental investingations on the toxicity of ammonia-effects on ventilation frequency, growth, epidermal mucous cells, and gill structure of rainbow-trout Salmo gairdneri. Dis. Aquat. Ogr., 3: 159-165. https://doi.org/10.3354/dao003159
  29. Liew, H.J., A.K. Sinha, C.M. Nawata, R. Blust, C.M. Wood and G. De Boeck. 2013. Differential responses in ammonia excretion, sodium fluxes and gill permeability explain different sensitivities to acute high environmental ammonia in three freshwater teleosts. Aquatic toxicology, 126: 63-76. https://doi.org/10.1016/j.aquatox.2012.10.012
  30. Mazeaud, M.M., F. Mazeaud and E.M. Donaldson. 1977. Primary and secondary effects of stress in fish: some new data with a general review. Transactions of the American Fisheries Society, 106: 201-212. https://doi.org/10.1577/1548-8659(1977)106<201:PASEOS>2.0.CO;2
  31. McLeay, D.J. and D.A. Brown. 1979. Stress and chronic effects of untreated and treated bleached kraft pulpmill effluent on the biochemistry and stamina of juvenile coho salmon (Oncorhynchus kisutch). Journal of the Fisheries Board of Canada, 36: 1049-1059. https://doi.org/10.1139/f79-147
  32. Meade, J.W. 1985. Allowable ammonia for fish culture. Prog. Fish. Cult., 3: 135-145.
  33. Michael, M.I., A.M. Hilmy, N.A. El-Domiaty and K. Wershana. 1987. Serum transaminases activity and histopathological changes in Clarias lazera chronically exposed to nitrite. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 86: 255-262.
  34. Min, B.H., M.S. Park, Y.K. Shin, Y.H. Do and J.I. Myeong. 2014. Physiological responses in Korean rockfish (Sebastes schlegeli) exposed to ammonia. Korean J. Environ. Biol., 32: 344-352. (in Korean) https://doi.org/10.11626/KJEB.2014.32.4.344
  35. Mommsen, T.P., M.M. Vijayan and T.W. Moon. 1999. Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation. Reviews in Fish Biology and Fisheries, 9: 211-268. https://doi.org/10.1023/A:1008924418720
  36. Nolan, D.T., R.L.J.M. Op't Veld, P.H.M. Balm and S.W. Bonga. 1999. Ambient salinity modulates the response of the tilapia, Oreochromis mossambicus (Peters), to net confinement. Aquaculture, 177: 297-309. https://doi.org/10.1016/S0044-8486(99)00093-9
  37. Ortega, V.A., K.J. Renner and N.J. Bernier. 2005. Appetite-suppressing effects of ammonia exposure in rainbow trout associated with regional and temporal activation of brain monoaminergic and CRF systems. Journal of Experimental Biology, 208: 1855-1866. https://doi.org/10.1242/jeb.01577
  38. Ozaki, H. 1978. Physiology of fish, Vol. 1, Blood. Circulation. Midori-shobo. Tokyo, 326.
  39. Paley, R.K., I.D. Twitchen and F.B. Eddy. 1993. Ammonia, $Na^+$, $K^+$ and $Cl^-$ levels in Rainbow trout yolk-sac fry in response to external ammonia. J. Exp. Biol., 180: 273-284.
  40. Pan, C.H., Y.H. Chien and Y.J. Wang. 2011. Antioxidant defence to ammonia stress of characins (hyphessobrycon eques steindachner) fed diets supplemented with carotenoids. Aquacult. Nutr., 17: 258-266. https://doi.org/10.1111/j.1365-2095.2009.00747.x
  41. Park, J. 2005. Design and performance of pilot recirculating aquaculture system for abalone Haliotis discus hannai. Ph.D. Thesis, Pukyong National University, Busan, Korea.
  42. Park, J.M., J.K. Cho, K.H. Han, N.R. Kim, H.K. Hwang, K.M. Kim, J.I. Myeong and M.H. Son. 2014. Early life history of the sevenband grouper, Epinephelus septemfasciatus from Korea. Dev. Reprod., 18: 13-23. (in Korean) https://doi.org/10.12717/DR.2014.18.1.013
  43. Park, J.Y., J.M. Park, C.G. Hong, K.M. Kim and J.K. Cho. 2016. Physiological and biochemical response of blood on low temperature stress in sevenband grouper, Epinephelus septemfasciatus. Korean J. Ichthyol., 28: 1-8. (in Korean)
  44. Park, S.D., P.K. Kim and J.K. Jeon. 2014. Effect of ammonia concentration in rearing water on growth and blood components of the Parrotfish Oplegnathus fasciatus. Kor. J. Fish. Aquat. Sci., 47: 840-846. (in Korean)
  45. Paust, L.O., A. Foss and A.K. Imsland. 2011. Effects of chronic and periodic exposure to ammonia on growth, food conversion efficiency and blood physiology in juvenile Atlantic halibut (Hippoglossus hippoglossus L.). Aquaculture, 315: 400-406. https://doi.org/10.1016/j.aquaculture.2011.03.008
  46. Person-Le Ruyet, J., H. Chartois and L. Quemener. 1995. Comparative acute ammonia toxicity in marine fish and plasma ammonia response. Aquaculture, 136: 181-194. https://doi.org/10.1016/0044-8486(95)01026-2
  47. Person-Le Ruyet, J., A. Lamers, A. Le Roux, A. Severe, G. Boeuf and N. Mayer-Gostan. 2003. Long term ammonia exposure of turbot: effects on plasma parameters. J. Fish. Biol., 62: 879-894. https://doi.org/10.1046/j.1095-8649.2003.00073.x
  48. Randall, D.J. and P.A. Wright. 1987. Ammonia distribution and excretion in fish. Fish. Physiol. Biochem., 3: 107-120. https://doi.org/10.1007/BF02180412
  49. Remen, M., A.K. Imsland, S.O. Stefansson, T.M. Jonassen and A. Foss. 2008. Interactive effects of ammonia and oxygen on growth and physiological status of juvenile Atlantic cod (Gadus morhua). Aquaculture, 274: 292-299. https://doi.org/10.1016/j.aquaculture.2007.11.032
  50. Roumieh, R., A. Barakat, N.E. Abdelmeguid, J. Ghanawi and I.P. Saoud. 2013. Acute and chronic effects of aqueous ammonia on marbled spinefoot rabbitfish, Siganus rivulatus (Forsskal 1775). Aquacult. Res., 44: 1777-1790.
  51. Ruffier, P.J., W.C. Boyle and J. Kleinschmidt. 1981. Short-term acute bioassays to evaluate ammonia toxicity and effluent standards. Journal (Water Pollution Control Federation), pp. 367-377.
  52. Russo, R.C. 1985. Ammonia, nitrite and nitrate. In: Rand, G.M. and S.R. Petrocelli (eds.), Fundamentals of aquatic toxicology. Hemisphere Publishing. Washington DC, U.S.A., pp. 455-471.
  53. Russo, R.C. and R.V. Turston. 1991. Toxicity of ammonia, nitrite and nitrate to fishes. Aquaculture and water quality. In: Brune, E. and J.R. Tomasso (eds.), Advances in World Aquaculture. Vol. 3. The World Aquaculture Society. Louisiana, U.S.A., pp. 58-89.
  54. Song, Y.B., H.J. Baek, H.B. Kim, K.J. Lee, K. Soyano and Y.D. Lee. 2005. Induced sex reversal of sevenband grouper, Epinephelus septemfasciatus by 17$\alpha$-methyltestosterone. J. Aquaculture, 18: 167-172. (in Korean)
  55. Song, Y.B., H.J. Baek, H.B. Kim, K. Soyano, S.J. Kim and Y.D. Lee. 2008. Induction of maturation and ovulation with HCG treatment in the sevenband grouper Epinephelus septemfasciatus. Kor. J. Aquacult., 2: 96-101. (in Korean)
  56. Suh, K.H., B.J. Kim and I.G. Jeon. 2001. Design and Development of Intergrated Recirculating Aquaculture System. J. Kor. Fish. Soc., 34: 70-76.
  57. Tsui, T.K.N., C.Y.C. Hung, C.M. Nawata, J.M. Wilson, P.A. Wright and C.M. Wood. 2009. Ammonia transport in cultured gill epithelium of freshwater rainbow trout: the importance of Rhesus glycoproteins and the presence of an apical $Na^+/NH^{4+}$ exchange complex. Journal of Experimental Biology, 212: 878-892. https://doi.org/10.1242/jeb.021899
  58. Tsuzuki, M.Y., K. Ogawa, C.A. Strussmann, M. Maita and F. Takashima. 2001. Physiological responses during stress and subsequent recovery at different salinities in adult pejerrey Odontesthes bonariensis. Aquaculture, 200: 349-362. https://doi.org/10.1016/S0044-8486(00)00573-1
  59. Turner, A.H. 1937. Serum protein measurements in the lower vertebrates. II. In marine teleosts and elasmobranchs. Biological Bulletin, 73: 511-526. https://doi.org/10.2307/1537610
  60. Vijayan, M.M., C. Pereira, E.G. Grau and G. K. Iwama. 1997. Metabolic responses associated with confinement stress in tilapia: the role of cortisol. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology, 116: 89-95. https://doi.org/10.1016/S0742-8413(96)00124-7
  61. Wendelaar Bonga, S.E. 1997. The stress response in fish. Physiol. Rev., 77: 591-625. https://doi.org/10.1152/physrev.1997.77.3.591
  62. Wilson, R.W. and E.W. Taylor. 1992. Transbranchial ammonia gradients and acidbase reponses to high external ammonia in rainbow trout (Oncorhynchus mykiss) acclimated to different salinities. J. Exp. Biol., 166: 95-112.
  63. Wood, C.M. and C.M. Nawata. 2011. A nose-to-nose comparison of the physiological and molecular responses of rainbow trout to high environmental ammonia in seawater versus freshwater. Journal of Experimental Biology, 214: 3557-3569. https://doi.org/10.1242/jeb.057802
  64. Yanagisawa, T. and K. Hashimoto. 1984. Plasma albumins in elasmobranchs. Missuishi, 50: 1083.