DOI QR코드

DOI QR Code

Leukemia Stem Cells in Blood Cells; Focused on Acute Myeloid Leukemia

  • Lee, Ji Yoon (Department of Biomedical Laboratory Science, College of Health Sciences, Sangji University)
  • Received : 2017.02.21
  • Accepted : 2017.04.02
  • Published : 2017.03.31

Abstract

It is known that acute myeloid leukemia (AML) is a heterogeneous blood cancer, which is enormously propagated by self-renewing leukemia stem cells (LSCs). The persistence of LSCs after chemotherapy can contribute to minimal residual disease and relapse by LSCs can be evoked promptly. Elucidating special molecules and cellular activity of LSCs is an extremely important to eliminate AML. Despite an increasing understanding of the origin of LSCs by incessant study, AML still remains a notorious disease with high mortality. An exact identification of the LSCs that sustain the proliferation of neoplastic clone is a fundamental issue in AML treatment. CD34+CD38- conventional phenotype is overall regarded as LSCs, but it has a limitation that is still hard to demarcate exactly due to similarity with normal hematopoietic stem cells (HSCs). Not all primary blasts and progenitors have equal function, thus a bona fide marker for identifying LSCs from HSCs is needed in hematologic malignancy, especially in AML. These findings have direct important implications in both in mechanistic study of LSCs as well as in the strategies of more effective therapies. In this review, I briefly summarized current advances in LSCs biology, focusing on membrane markers and a functional behavior of LSCs in AML treatment with monoclonal antibodies. Ultimately, it may be helpful in overviewing the status of LSC research, while expecting the clinic benefits of target therapy by specific inhibition.

Keywords

References

  1. Ailles LE, Gerhard B, Hogge DE. Detection and characterization of primitive malignant and normal progenitors in patients with acute myelogenous leukemia using long-term coculture with supportive feeder layers and cytokines. Blood. 1997. 90: 2555-2564.
  2. Bhatia M, Wang JC, Kapp U, Bonnet D, Dick JE. Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice. Proceedings of the National Academy of Sciences of the United States of America. 1997. 94: 5320 -5325. https://doi.org/10.1073/pnas.94.10.5320
  3. Blair A, Hogge DE, Ailles LE, Lansdorp PM, Sutherland HJ. Lack of expression of thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood. 1997. 89: 3104-3112.
  4. Blair A, Sutherland HJ. Primitive acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo lack surface expression of c-kit (CD117). Experimental Hematology. 2000. 28: 660-671. https://doi.org/10.1016/S0301-472X(00)00155-7
  5. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine. 1997. 3: 730-737. https://doi.org/10.1038/nm0797-730
  6. Bruedigam C, Bagger FO, Heidel FH, Paine Kuhn C, Guignes S, Song A, Austin R, Vu T, Lee E, Riyat S, Moore AS, Lock RB, Bullinger L, Hill GR, Armstrong SA, Williams DA, Lane SW. Telomerase inhibition effectively targets mouse and human AML stem cells and delays relapse following chemotherapy. Cell Stem Cell. 2014. 15: 775-790. https://doi.org/10.1016/j.stem.2014.11.010
  7. Chavez-Gonzalez A, Dorantes-Acosta E, Moreno-Lorenzana D, Alvarado-Moreno A, Arriaga-Pizano L, Mayani H. Expression of CD90, CD96, CD117, and CD123 on different hematopoietic cell populations from pediatric patients with acute myeloid leukemia. Archives of Medical Research. 2014. 5: 343-350.
  8. Dieter SM, Ball CR, Hoffmann CM, Nowrouzi A, Herbst F, Zavidij O, Abel U, Arens A, Weichert W, Brand K, Koch M, Weitz J, Schmidt M, von Kalle C, Glimm H. Distinct types of tumorinitiating cells form human colon cancer tumors and metastases. Cell Stem Cell. 2011. 9: 357-365. https://doi.org/10.1016/j.stem.2011.08.010
  9. Eppert K, Takenaka K, Lechman ER, Waldron L, Nilsson B, van Galen P, Metzeler KH, Poeppl A, Ling V, Beyene J, Canty AJ, Danska JS, Bohlander SK, Buske C, Minden MD, Golub TR, Jurisica I, Ebert BL, Dick JE. Stem cell gene expression programs influence clinical outcome in human leukemia. Nature Medicine. 2011. 17: 1086-1093. https://doi.org/10.1038/nm.2415
  10. Feller N, van der Pol MA, van Stijn A, Weijers GW, Westra AH, Evertse BW, Ossenkoppele GJ, Schuurhuis GJ. MRD parameters using immunophenotypic detection methods are highly reliable in predicting survival in acute myeloid leukaemia. Leukemia. 2004. 18: 1380-1390. https://doi.org/10.1038/sj.leu.2403405
  11. Ferrara F, Schiffer CA. Acute myeloid leukaemia in adults. Lancet. 2013. 381: 484-495. https://doi.org/10.1016/S0140-6736(12)61727-9
  12. Goardon N, Marchi E, Atzberger A, Quek L, Schuh A, Soneji S, Woll P, Mead A, Alford KA, Rout R, Chaudhury S, Gilkes A, Knapper S, Beldjord K, Begum S, Rose S, Geddes N, Griffiths M, Standen G, Sternberg A, Cavenagh J, Hunter H, Bowen D, Killick S, Robinson L, Price A, Macintyre E, Virgo P, Burnett A, Craddock C, Enver T, Jacobsen SE, Porcher C, Vyas P. Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. Cancer Cell. 2011. 19: 138-152. https://doi.org/10.1016/j.ccr.2010.12.012
  13. Hamburger AW, Salmon SE. Primary bioassay of human tumor stem cells. Science. 1977. 197: 461-463. https://doi.org/10.1126/science.560061
  14. Hosen N, Park CY, Tatsumi N, Oji Y, Sugiyama H, Gramatzki M, Krensky AM, Weissman IL. CD96 is a leukemic stem cellspecific marker in human acute myeloid leukemia. Proceedings of the National Academy of Sciences of the United States of America. 2007. 104: 11008-11013. https://doi.org/10.1073/pnas.0704271104
  15. Hope KJ, Jin L, Dick JE. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in selfrenewal capacity. Nature Immunology. 2004. 5: 738-743. https://doi.org/10.1038/ni1080
  16. Ishikawa F, Yoshida S, Saito Y, Hijikata A, Kitamura H, Tanaka S, Nakamura R, Tanaka T, Tomiyama H, Saito N, Fukata M, Miyamoto T, Lyons B, Ohshima K, Uchida N, Taniguchi S, Ohara O, Akashi K, Harada M, Shultz LD. Chemotherapyresistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nature Biotechnology. 2007. 25: 1315-1321. https://doi.org/10.1038/nbt1350
  17. Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE. Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nature Medicine. 2006. 12: 1167-1174. https://doi.org/10.1038/nm1483
  18. Jin L, Lee EM, Ramshaw HS, Busfield SJ, Peoppl AG, Wilkinson L, Guthridge MA, Thomas D, Barry EF, Boyd A, Gearing DP, Vairo G, Lopez AF, Dick JE, Lock RB. Monoclonal antibodymediated targeting of CD123, IL-3 receptor alpha chain, eliminates human acute myeloid leukemic stem cells. Cell Stem Cell. 2009. 5: 31-42. https://doi.org/10.1016/j.stem.2009.04.018
  19. Jordan CT, Guzman ML, Noble M. Cancer stem cells. The New England Journal of Medicine. 2006. 355: 1253-1261. https://doi.org/10.1056/NEJMra061808
  20. Kikushige Y, Shima T, Takayanagi S, Urata S, Miyamoto T, Iwasaki H, Takenaka K, Teshima T, Tanaka T, Inagaki Y, Akashi K. TIM-3 is a promising target to selectively kill acute myeloid leukemia stem cells. Cell Stem Cell. 2010. 7: 708-717. https://doi.org/10.1016/j.stem.2010.11.014
  21. Lacombe F, Durrieu F, Briais A, Dumain P, Belloc F, Bascans E, Reiffers J, Boisseau MR, Bernard P. Flow cytometry CD45 gating for immunophenotyping of acute myeloid leukemia. Leukemia. 1997. 11: 1878-1886. https://doi.org/10.1038/sj.leu.2400847
  22. Lapidot T, Dar A, Kollet O. How do stem cells find their way home? Blood. 2005. 106: 1901-1910. https://doi.org/10.1182/blood-2005-04-1417
  23. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE. A cell initiating human acute myeloid leukaemia after transplantation into scid mice. Nature. 1994. 367: 645-648. https://doi.org/10.1038/367645a0
  24. Lee JY, Han AR, Lee SE, Min WS, Kim HJ. Co-culture with podoplanin+ cells protects Leukemic blast cells with leukemiaassociated antigens in the tumor microenvironment. Molecular Medicine Reports. 2016. 13: 3849-3857. https://doi.org/10.3892/mmr.2016.5009
  25. Majeti R, Chao MP, Alizadeh AA, Pang WW, Jaiswal S, Gibbs KD, Jr., van Rooijen N, Weissman IL. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell. 2009. 138: 286-299. https://doi.org/10.1016/j.cell.2009.05.045
  26. Matsushita H, Nakajima H, Nakamura Y, Tsukamoto H, Tanaka Y, Jin G, Yabe M, Asai S, Ono R, Nosaka T, Sugita K, Morimoto A, Hayashi Y, Hotta T, Ando K, Miyachi H. C/EBPalpha and C/EBPvarepsilon induce the monocytic differentiation of myelomonocytic cells with the MLL-chimeric fusion gene. Oncogene. 2008. 27: 6749-6760. https://doi.org/10.1038/onc.2008.285
  27. Menke-van der Houven van Oordt CW, Gomez-Roca C, van Herpen C, Coveler AL, Mahalingam D, Verheul HM, van der Graaf WT, Christen R, Ruttinger D, Weigand S, Cannarile MA, Heil F, Brewster M, Walz AC, Nayak TK, Guarin E, Meresse V, Le Tourneau C. First-in-human phase i clinical trial of RG-7356, an anti-CD44 humanized antibody, in patients with advanced, cd44-expressing solid tumors. Oncotarget. 2016. 7: 80046-80058.
  28. Petersdorf SH, Kopecky KJ, Slovak M, Willman C, Nevill T, Brandwein J, Larson RA, Erba HP, Stiff PJ, Stuart RK, Walter RB, Tallman MS, Stenke L, Appelbaum FR. A phase 3 study of gemtuzumab ozogamicin during induction and postconsolidation therapy in younger patients with acute myeloid leukemia. Blood. 2013. 121: 4854-4860. https://doi.org/10.1182/blood-2013-01-466706
  29. Rollins-Raval M, Pillai R, Warita K, Mitsuhashi-Warita T, Mehta R, Boyiadzis M, Djokic M, Kant JA, Roth CG. CD123 immunohistochemical expression in acute myeloid leukemia is associated with underlying FLT3-ITD and NPM1 mutations. Applied Immunohistochemistry & Molecular Morphology. 2013. 21: 212-217.
  30. Taussig DC, Pearce DJ, Simpson C, Rohatiner AZ, Lister TA, Kelly G, Luongo JL, Danet-Desnoyers GA, Bonnet D. Hematopoietic stem cells express multiple myeloid markers: Implications for the origin and targeted therapy of acute myeloid leukemia. Blood. 2005. 106: 4086-4092. https://doi.org/10.1182/blood-2005-03-1072
  31. Testa U, Riccioni R, Militi S, Coccia E, Stellacci E, Samoggia P, Latagliata R, Mariani G, Rossini A, Battistini A, Lo-Coco F, Peschle C. Elevated expression of IL-3Ralpha in acute myelogenous leukemia is associated with enhanced blast proliferation, increased cellularity, and poor prognosis. Blood. 2002. 100: 2980-2988. https://doi.org/10.1182/blood-2002-03-0852
  32. Theocharides AP, Jin L, Cheng PY, Prasolava TK, Malko AV, Ho JM, Poeppl AG, van Rooijen N, Minden MD, Danska JS, Dick JE, Wang JC. Disruption of sirpalpha signaling in macrophages eliminates human acute myeloid leukemia stem cells in xenografts. Journal of Experimental Medicine. 2012. 209: 1883-1899. https://doi.org/10.1084/jem.20120502
  33. van Rhenen A, van Dongen GA, Kelder A, Rombouts EJ, Feller N, Moshaver B, Stigter-van Walsum M, Zweegman S, Ossenkoppele GJ, Jan Schuurhuis G. The novel aml stem cell associated antigen CLL-1 aids in discrimination between normal and leukemic stem cells. Blood. 2007. 110: 2659-2666. https://doi.org/10.1182/blood-2007-03-083048
  34. Vugts DJ, Heuveling DA, Stigter-van Walsum M, Weigand S, Bergstrom M, van Dongen GA, Nayak TK. Preclinical evaluation of 89zr-labeled anti-CD44 monoclonal antibody RG-7356 in mice and cynomolgus monkeys: Prelude to phase 1 clinical studies. MAbs. 2014. 6: 567-575. https://doi.org/10.4161/mabs.27415
  35. Walter RB, Appelbaum FR, Estey EH, Bernstein ID. Acute myeloid leukemia stem cells and CD33-targeted immunotherapy. Blood. 2012. 119: 6198-6208. https://doi.org/10.1182/blood-2011-11-325050