DOI QR코드

DOI QR Code

Preparation of Hydrophobic Antimicrobal Compounds Encapsulated Nanoparticles Using Alkoxysilane-functionalized Amphiphilic Polymer Precursor and Their Antimicrobial Properties

실란 기능화 양친성 고분자 전구체를 이용한 소수성 항균물질 담지 나노 입자 제조 및 항균 특성

  • Kim, Nahae (Department of Advanced Materials Engineering, Kangwon National University) ;
  • Kim, Juyoung (Department of Advanced Materials Engineering, Kangwon National University)
  • 김나혜 (강원대학교 기능소재공학과) ;
  • 김주영 (강원대학교 기능소재공학과)
  • Received : 2017.02.14
  • Accepted : 2017.03.02
  • Published : 2017.03.30

Abstract

In this study, nanoparticles which encapsulated hydrophobic antimicrobial compounds with 50wt% of payload and 70%of solid content were prepared. These nanoparticles could be dispersed at water as well as various medium. Water dispersible organic-inorganic (O-I) hybrid nanoparticles were first prepared using alkoxysilane-functionalized amphiphilic polymer precursors through a conventional sol-gel process. Hydrophobic antimicrobial compound, Eugenol encapsulated nanoparticles were prepared using these O-I hybrid nanoparticles through a new nanoprecipitation process. The effect of various preparation on the size of nanoparticles, amount of payload, antimicrobial activity, and release rate of encapsulated compounds was investigated. All eugenol-encapsulated O-I nanoparticles regardless of preparation condition showed the same minimal inhibitory concentration (MIC) (50mg/ml) and 99% of antimicrobial activity for every strain. Their antimicrobial activity could maintain longer than two weeks. Especially, eugenol-encapsulated O-I nanoparticles prepared using tetraethoxysilane (TEOS) exhibited the highest payload (50wt%) and the lowest release rate which was owing to higher inorganic content in the O-I nanoparticles. And these O-I nanoparticles dispersed in hexanediol (HD) showed the highest antimicrobial activity and solid content (70wt%) because HD acted as a solvent as well as a antimicrobial agent.

본 연구에서는 50 wt%의 매우 높은 담지량과 70%의 높은 고형분을 가지면서도 물속이나 다양한 제품에 나노 입자 형태로 분산이 가능한 새로운 형태의 소수성 항균 물질 담지 나노 입자를 제조하였다. 실란 기능화 양친성 고분자 전구체(Alkoxysilane-functionalized Amphiphilic Polymer Precursor; 이하 AAPP)와 다양한 실란 화합물을 이용하여 전형적인 Hydrolytic Sol-Gel 공정으로 제조된 수분산 유-무기 하이브리드 나노 입자들을 제조하고, 이를 이용하여서 나노 침전법을 사용하여서 소수성 항균물질을 고함량으로 담지할 수 있는 새로운 공정으로 소수성 항균물질인 Eugenol이 담지된 유-무기 하이브리드 형태의 나노입자 제조하였다. 나노 입자 제조시 제조 조건의 변화에 따른 나노 입자들의 크기, 담지량, 항균 활성 및 방출거동 등에 영향을 미치는 인자들을 조사하였다. 나노 입자의 종류에 관계없이 Minimal Inhibitory Concentration (MIC)는 50 mg/ml로 동일하였고, 모든 균주에서 99 %에 해당하는 우수한 항균력과 Pseudomonas aeruginosa (PSE)를 제외하고는 2주 이상의 항균 지속력을 나타내었다. 특히, Tetraethoxysilane (TEOS)를 첨가한 경우에는 견고한 무기물 도메인으로 인해 가장 높은 담지량 (50 wt.%)과 서방출 (Sustained release)을 나타내었고, Hexanediol (HD)을 첨가한 경우에는 HD 자체의 항균력과 용매로서의 역할도 하였기 때문에 가장 높은 항균력과 70%의 고형분을 나타내었다.

Keywords

References

  1. J. Weiss, S. Gaysinsky, M. Davidson, and J. McClements, Global Issues in Food Science and Technology 24, 425 (2009).
  2. Lee DS, Innovations in Food Packaging, 65, 108 (2005).
  3. P. Appendini and J. H. Hotchkiss, Innovative Food Science Emerging Technol. 3, 113 (2002). https://doi.org/10.1016/S1466-8564(02)00012-7
  4. C. Silvestre, D. Duraccio, and S. Cimmino, Prog In Polymer Sci, 36, (2011).
  5. T.V. Duncan, J Colloid Interface Sci, 363, 1 (2011). https://doi.org/10.1016/j.jcis.2011.07.017
  6. F. Bakkali, S. Averbeck, D. Averbeck, and M. Idaomar, Food and Chemical Toxicology, 46, 446 (2008). https://doi.org/10.1016/j.fct.2007.09.106
  7. Prow TW, Grice JE, Lin LL, Fay R, Butler M, Becker W, Wurm EM, Yoong C, Robertson TA, Soyer HP, Roberts Ms, Adv. Drug Deliv. Rev, 63, 470 (2011). https://doi.org/10.1016/j.addr.2011.01.012
  8. L. Sanchez-Gonzalez, M. Chafer, M. Hernandez, A. Chiralt, and C. Gonzalez-Martinez, Food Control, 22, 1302 (2011). https://doi.org/10.1016/j.foodcont.2011.02.004
  9. P. Chalier, A.B. Arfa, L.P. Belloy, and N. Gontard, J. Appl. Polym. Sci., 106, 611 (2007). https://doi.org/10.1002/app.26662
  10. T.K. Biji and R.H. Scofield, Trends Pharmacol. Sci., 307, 334 (2009).
  11. Shin SB, 한국산학기술학회논문지 9, 1344 (2008).
  12. L. Rojo, B. Vazquez, J. Parra, A.L Bravo, S. Deb, and J.S. Roman, Biomacromolecules 7, 2751 (2006). https://doi.org/10.1021/bm0603241
  13. L. Rojo, J. M. Barcenilla, B. Vazquez, R. Gonzalez, and J.S. Roman, Biomacromolecules, 9, 2530 (2008). https://doi.org/10.1021/bm800570u
  14. L. Rojo, J. M. Barcenilla, B. Vazquez, R. Gonzalez, and J.S. Roman, Dental Materials 24, 1709 (2008). https://doi.org/10.1016/j.dental.2008.04.004
  15. L. Keawchaoon and R. Yoksan, Colloid Surface B 84, 163 (2011). https://doi.org/10.1016/j.colsurfb.2010.12.031
  16. F. Nazzaro, P. Orlando, F. Fratianni, and R. Coppola, Current Opinion in Biotechnology, 23, 182 (2011).
  17. J. Safaei-Ghomi, Abdolrasoul H. Ebrahimabadi, Z. Djafari-Bidgoli, and H. Batooli, Food Chemistry, 115, 1524 (2009). https://doi.org/10.1016/j.foodchem.2009.01.051
  18. Rejinold NS, Muthunarayanan M, Divyarani VV, Sreerekha PR, Chennazhi KP, Nair SV, Tamura H, Jayakumar R, J Colloid Interface Sci, 360, 39 (2011). https://doi.org/10.1016/j.jcis.2011.04.006
  19. K. Pan, Q. Zhong, and S.J. Baek, J. Agric. Food Chem., 61, 6036 (2013). https://doi.org/10.1021/jf400752a
  20. Yallapu MM, Gupta BK, Jaggi M, Chauhan SC., J Colloid Interface Sci, 351, 19 (2010). https://doi.org/10.1016/j.jcis.2010.05.022
  21. (Environmental Toxicology and Pharmacology 32 (2011) 63) Chemical composition and antimicrobial activity of the essential oil of Rosemary / Jianga Y, Wu N, Fu YJ, Wang W, Luo M, Zhao CJ, Zu YJ, Liu XL., Environ Toxicol Pharmacol 32, 63 (2011). https://doi.org/10.1016/j.etap.2011.03.011
  22. Bell LN, "Stability testing of nutraceuticals and functional foods, In: Handbook of nutraceuticls and functional foods", Wildman REC, 501, CRC Press, New York, (2001).
  23. Jhonson KA, Adv. Drug Deliv Rev, 26, 3 (1997). https://doi.org/10.1016/S0169-409X(97)00506-1
  24. Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F, Nanomedicine, 2, 8 (2006). https://doi.org/10.1016/j.nano.2005.12.003
  25. Park SJ, Kim SH, J Colloid Interface Sci, 271, 336 (2002).
  26. O’Donnell PB, McGinity JW, Adv Drug Deliv Rev, 28, 25 (1997). https://doi.org/10.1016/S0169-409X(97)00049-5
  27. Bilati U, Allemann E, Doelker E, Eur J Pharm. Sci. 24, 67 (2005). https://doi.org/10.1016/j.ejps.2004.09.011
  28. Quintanar-Guerrero D, Allemann E, Fessi H, Doelker E, Drug Dev Ind Pharm, 24, 1113 (1998). https://doi.org/10.3109/03639049809108571
  29. Rosler A, Vandermeulen GW, Klok HA, Adv drug deliv Rev, 3, 95 (2001).
  30. Letchford K, Burt H, Eur J. Pharm Biopharm., 65, 259 (2007). https://doi.org/10.1016/j.ejpb.2006.11.009
  31. Quaglia F, Ostacolo L, De Rosa G, La Rotonda MI, Ammendola M, Nese G, Maglio G, Palumbo R, Vauthier C, Int. J. Pharm., 324, 56 (2006). https://doi.org/10.1016/j.ijpharm.2006.07.020
  32. Metha RC, Thanoo BC, Deluca PP, J Controlled. Release, 41, 249 (1996). https://doi.org/10.1016/0168-3659(96)01332-6
  33. Brigelius-Flohe, R., Traber, MG, FASEB J, 13, 1145 (1999). https://doi.org/10.1096/fasebj.13.10.1145
  34. Kim NH, Kim JY, Appl. Chem. Eng. 27, 26 (2016). https://doi.org/10.14478/ace.2015.1094
  35. Kim HJ, Kim JY, Kim JH, Park JY, 유해군 80% 이상 차단을 위한 휴먼케어용 습식환경 저항성 항균소재 개발", 지식경제부 산업원천기술개발사업 (2012-2013).
  36. Cho SK, Kim NH, Lee SJ, Lee HS, Lee SH, Kim JY, Choi JW, Chemosphere, 156, 302 (2016). https://doi.org/10.1016/j.chemosphere.2016.05.004
  37. Jang HS, Choi I, J Korean Soc Food Sci Natr, 41, 261 (2012). https://doi.org/10.3746/jkfn.2012.41.2.261