DOI QR코드

DOI QR Code

Chlorella vulgaris의 흡광도, 클로로필 및 개체수 통합 영향에 근거한 중금속 및 나노입자 독성 조사

Toxicity Evaluation of Metals and Metal-oxide Nanoparticles based on the Absorbance, Chlorophyll Content, and Cell Count of Chlorella vulgaris

  • 장현진 (영남대학교 환경공학과) ;
  • 이문희 (영남대학교 환경공학과) ;
  • 이은진 (영남대학교 환경공학과) ;
  • 양신 (영남대학교 환경공학과) ;
  • 공인철 (영남대학교 환경공학과)
  • Jang, Hyun Jin (Department of Environmental Engineering, Yeungnam University) ;
  • Lee, Mun Hee (Department of Environmental Engineering, Yeungnam University) ;
  • Lee, Eun Jin (Department of Environmental Engineering, Yeungnam University) ;
  • Yang, Xin (Department of Environmental Engineering, Yeungnam University) ;
  • Kong, In Chul (Department of Environmental Engineering, Yeungnam University)
  • 투고 : 2016.09.27
  • 심사 : 2016.10.28
  • 발행 : 2017.03.31

초록

본 연구에서는 중금속 7종(Cu, Cd, Cr, As(III), As(V), Zn, Ni) 및 나노입자 5종(CuO, ZnO, NiO, $TiO_2$, $Fe_2O_3$)에 대한 독성을 수계 대표 생물종인 녹조류 Chlorella vulgaris를 이용한 생물검정법으로 평가하였다. 조류에 미치는 영향은 흡광도, 클로로필 및 개체수 측정에 대한 결과를 통합하여 평가하였다. 중금속의 통합결과독성($TEC_{50}$) 순서는 Cr ($0.7mgL^{-1}$) > Cu ($1.7mgL^{-1}$) > Cd ($3.2mgL^{-1}$) > Zn ($3.9mgL^{-1}$) > Ni ($13.2mgL^{-1}$) > As(III) ($17.8mgL^{-1}$) ${\gg}$ As(V) (> $1000mgL^{-1}$)로 나타났다. 중금속은 측정종말점에 따라 일부 상이한 민감도와 독성이 조사되었다. 나노입자의 독성($TEC_{50}$) 순서는 ZnO ($2.4mgL^{-1}$) > NiO ($21.1mgL^{-1}$) > CuO ($36.6mgL^{-1}$) > $TiO_2$ ($62.5mgL^{-1}$) > $Fe_2O_3$ ($82.7mgL^{-1}$)로 나타났다. 나노입자는 측정종말점간에 비슷한 민감도와 독성을 보였다. 따라서 오염물의 독성을 평가하기 위해서 단일 방법에 의한 결과보다는 다양한 측정종말점의 통합결과에 근거한 접근이 적절할 것이다.

In this study, toxicities of seven metals (Cu, Cd, Cr, As(III), As(V), Zn, Ni) and five metal oxide nanoparticles (NPs: CuO, ZnO, NiO, $TiO_2$, $Fe_2O_3$) were evaluated based on the growth of Chlorella vulgaris. Effect on algae growth was evaluated by integrating the results of absorption, chlorophyll content, and cell count. The toxicity rankings of metals was observed as Cr ($0.7mgL^{-1}$) > Cu ($1.7mgL^{-1}$) > Cd ($3.2mgL^{-1}$) > Zn ($3.9mgL^{-1}$) > Ni ($13.2mgL^{-1}$) > As(III) ($17.8mgL^{-1}$) ${\gg}$ As(V) (> $1000mgL^{-1}$). Slightly different orders and sensitivities of metal toxicity were examined depending on endpoints of algal growth. In case of NPs, regardless of endpoints, similar toxicity rankings of NPs ($TEC_{50}$) were observed, showing ZnO ($2.4mgL^{-1}$) > NiO ($21.1mgL^{-1}$) > CuO ($36.6mgL^{-1}$) > $TiO_2$ ($62.5mgL^{-1}$) > $Fe_2O_3$ ($82.7mgL^{-1}$). These results indicate that an integrating results of endpoints might be an effective strategy for the assessment of contaminants.

키워드

참고문헌

  1. Mahnaz, C., Mohamad, A. S., Joseph, S., and William, L. M., "The Mechanisms of Removal," Radiat. Phys. Chem., 53(2), 145-150 (1998). https://doi.org/10.1016/S0969-806X(98)00001-2
  2. Katnoria, J. K., Arora, S., and Nagpal, A., "Genotoxic Potential," Asian J. Sci. Res., 1(2), 122-129 (2008). https://doi.org/10.3923/ajsr.2008.122.129
  3. Kim, K. R., Choi, K. Y., Kim, S. H., and Hong, G. H., "Feasibility of Present Soil Remediation Technologies," J. Kor. Soc. Environ. Eng., 32(12), 1076-1086 (2010).
  4. Hwang, E. T., Lee, J. I., Sang, B. I., and Gu, M. B., "Toxicity Monitoring and Assessment of Nanoparticles," KSBB J., 22(6), 414-420 (2007).
  5. Alvarez, P. J., Colvin, V., Lead, J., and Stone, V., "Research Priorities to Advance," ACS Nano, 3(7), 1616-1625 (2009). https://doi.org/10.1021/nn9006835
  6. Umh, H. N., Roh, J. K., Lee, B. C., Park, S. M., Yi, J. H., and Kim, Y. H., "Case Studies for Nanomaterials' Exposure," Kor. Chem. Eng. Res., 50(6), 1056-1063 (2012). https://doi.org/10.9713/kcer.2012.50.6.1056
  7. Biswas, P., and Wub, C. Y., "Nanoparticles and the Environment," J. Air Waste Manage., 55(6), 708-746 (2005). https://doi.org/10.1080/10473289.2005.10464656
  8. Kong, I. C., Kwon, H. J., and Ko, K. S., "Bioassesment and Comparison of Toxicity of Arsenics," J. Kor. Soc. Environ. Eng., 32(8), 795-801 (2010).
  9. Olguin, H. F., Salibian, A., and Puig, A., "Comparative Sensitivity of Scenedesmus Acutus," Inc. Environ. Toxicol., 15(1), 14-22 (2000). https://doi.org/10.1002/(SICI)1522-7278(2000)15:1<14::AID-TOX3>3.0.CO;2-6
  10. Bitton, G., Wastewater Microbiology, 2nd ed., Wiley-Liss, Inc. (1999).
  11. Mankiewicz-Boczek, J., Nalecz-Jawecki, G., Drobniewska, A., Kaza, M., Sumorok, B., Izydorczyk, K., Zalewski, M., and Sawicki, J., "Application of a Microbiotests Battery," Ecotoxicol. Environ. Saf., 71(3), 830-836 (2008). https://doi.org/10.1016/j.ecoenv.2008.02.023
  12. Kungolos, A., Emmanouil, C., Tsiridis, V., and Thiropoulos, N., "Evaluation of Toxic and Interactive Toxic Effects," Sci. Total Environ., 407(16), 4610-4615 (2009). https://doi.org/10.1016/j.scitotenv.2009.04.038
  13. An, Y. J., "Soil Ecotoxicity Assessment, using Cadmium Sensitive Plants," Environ. Pollut., 127(1), 21-26 (2004). https://doi.org/10.1016/S0269-7491(03)00263-X
  14. Sharma, V. K., and Sohn, M., "Aquatic Arsenic," Environ. Int., 35(4), 743-759 (2009). https://doi.org/10.1016/j.envint.2009.01.005
  15. Kong, I. C., and Lee, S. R., "Toxicity Assessment of Sole or Mixture Heavy Metals," J. Kor. Society Waste Manage., 29(6), 527-533 (2012).
  16. Gu, B. W., and Kong, I. C., "Toxicity Assessment of Nanopariticles," J. Kor. Soc. Environ. Eng., 36(6), 396-401 (2014). https://doi.org/10.4491/KSEE.2014.36.6.396
  17. Choi, B. S., Kang, D. W., Lee. J. Y., Park, E. S., Hong, Y. P., Yang, J. S., Lee, H. M., and Pak. J. D., "Acute Toxicity of Arsenic in Rats and Mice," Kor. J. Occup. Environ. Med., 15(4), 323-334 (2003).
  18. Kwon, M. J., "A Study on the Ecological Toxicity Test of Water Quality using Algae," M.S. Thesis, Hoseo Univ., Asan (2013).
  19. Qin, J., Lehr, C. R., Yuan, C. G., Le, X. C., McDermott, T. R., and Rosen, B. P., "Biotransformation of Arsenic by a Yellowstone," PNAS, 106(13), 5213-5217 (2009). https://doi.org/10.1073/pnas.0900238106