참고문헌
- Adak, D., Sarkar, M. and Mandal, S. (2014), "Effect of nano-silica on strength and durability of fly ash based geopolymer mortar", Constr. Build. Mater., 70, 453-459. https://doi.org/10.1016/j.conbuildmat.2014.07.093
- Adam, A.A. (2009), "Strength and durability properties of alkali activated slag and fly ash-based geopolymer concrete", Ph.D. Dissertation, RMIT University, Melbourne, Australia.
- Adam, A.A. and Horianto, X.X.X. (2014), "The effect of temperature and duration of curing on the strength of fly ash based geopolymer mortar", Proc. Eng., 95, 410-414. https://doi.org/10.1016/j.proeng.2014.12.199
- Aredes, F.G.M., Campos, T.M.B., Machado, J.P.B., Sakane, K.K., Thim, G.P. and Brunelli, D.D. (2015), "Effect of cure temperature on the formation of metakaolinite-based geopolymer", Ceram., 41(6), 7302-7311. https://doi.org/10.1016/j.ceramint.2015.02.022
- BIS 516 (1959), Methods of Tests for Strength of Concrete, New Delhi, India.
- BIS 1199 (1959), Method of Sampling and Analysis of Concrete, New Delhi, India.
- BIS 2386 (1963), Methods of Test for Aggregates Concrete-Part I Particle Size and Shape, New Delhi, India.
- BIS 383 (1970), Specification for Coarse and Fine Aggregates from Natural Sources for Concrete, New Delhi, India.
- BIS 7320 (1974), Indian Standard Specification for Concrete Slump Test Apparatus, New Delhi, India.
- BIS 9103 (1999), Concrete Admixtures-Specification, New Delhi, India.
- BIS 456 (2000), Plain and Reinforced Concrete-Code of Practice, New Delhi, India.
- BIS 3812 (2003), Pulverized Fuel Ash-Specifications, New Delhi, India.
- Buchwald, A. (2006). "What are geopolymers? Current state of research and technology, the opportunities they offer, and their significance for the precast industry", Betonwerk und Fertigteil-Technik, 72(7), 42-49.
- Chindaprasirt, P., Chareerat, T. and Sirivivatnanon, V. (2007), "Workability and strength of coarse high calcium fly ash geopolymer", Cement Concrete Compos., 29(3), 224-229. https://doi.org/10.1016/j.cemconcomp.2006.11.002
- Cross, D., Stephens, J. and Vollmer, J. (2005), "Field trials of 100% fly ash concrete", Concrete, 27(9), 47-51.
- Davidovits, J. (1988), "Soft mineralogy and geopolymers", Proceedings of the 88th International Conference on Geopolymer, Universite de Technologie, Compiegne, France.
- Davidovits, J. (1994a), "Global warming impact on the cement and aggregates industries", World Res. Rev., 6(2), 263-278.
- Davidovits, J. (1994b), "High alkali cements for 21st century concretes", Struct. Eng. Mech., 144, 383-398.
- Duan, P.C., Yan, W., Zhou, W., Luo, W. and Shen, C. (2015), "An investigation of the microstructure and durability of a fluidized bed fly ash-metakaolin geopolymer after heat and acid exposure", Mater. Des., 74, 125-137. https://doi.org/10.1016/j.matdes.2015.03.009
- Fernandez-Jimenez, A., Garcia-Lodeiro, I. and Palomo, A. (2007), "Durability of alkali-activated fly ash cementitious materials", J. Mater. Sci., 42(9), 3055-3065. https://doi.org/10.1007/s10853-006-0584-8
- Garcia-Lodeiro, I., Palomo, A. and Fernandez-Jimenez, A. (2007), "Alkali-aggregate reaction in activated fly ash systems", Cement Concrete Res., 37(2), 175-183. https://doi.org/10.1016/j.cemconres.2006.11.002
- Green, J. (2015), "Global demand for cement to reach 5.2 billiont".
- Ganesan, N., Indira, P.V. and Santhakumar, A. (2013), "Engineering properties of steel fibre reinforced geopolymer concrete", Adv. Concrete Constr., 1(4), 305-318. https://doi.org/10.12989/acc2013.1.4.305
- Hardjito, D. (2005), "Studies of fly ash-based geopolymer concrete", Ph.D. Dissertation, Curtin University of Technology, Australia.
- Hardjito, D., Wallah, S.E. and Rangan, B.V. (2002), "Research into engineering properties of geopolymer concrete", Proceedings of the International Conference on 'Geopolymer 2002-tur potential into profit‟, Melbourne, Australia, October.
- Jain, A.K. (2016), Status of Availability, Utilization and Potential of Fly Ash Use in Construction, UltraTech Cement Ltd.
- Jindal, B.B., Anand, A. and Badal, A. (2016), "Development of high strength fly ash based geopolymer concrete with alccofine", IOSR J. Mech. Civ. Eng., 55-58.
- Junaid, M.T., Kayali, O., Khennane, A. and Black, J. (2015), "A mix design procedure for low calcium alkali activated fly ash-based concretes", Constr. Build. Mater., 79, 301-310. https://doi.org/10.1016/j.conbuildmat.2015.01.048
- Kumar, S., Kumar, R. and Mehrotra, S.P. (2010), "Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer", J. Mater. Sci., 45(3), 607-615. https://doi.org/10.1007/s10853-009-3934-5
- Lloyd, N. and Rangan, B.V. (2010), "Geopolymer concrete with fly ash", Proceedings of the 2nd International Conference on Sustainable Construction Materials and Technologies, Ancona, Italy, June.
- Malhotra, V.M. (1999), "Making concrete "greener" with fly ash", Concrete., 21(5), 61-66.
- McLellan, B.C., Williams, R.P., Lay, J., Riessen, A.V. and Corder, G.D. (2011), "Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement", J. Clean. Prod., 19(9), 1080-1090. https://doi.org/10.1016/j.jclepro.2011.02.010
- Mehta, P.K. (2001), "Reducing the environmental impact of concrete", Concrete, 23(10), 61-66.
- Olivia, M. and Nikraz, H.R. (2011), "Strength and water penetrability of fly ash geopolymer concrete", ARPN J. Eng. Appl. Sci., 6(7) 70-78.
- Nath, P., Sarker, P.K. and Rangan, V.B. (2015), "Early age properties of low-calcium fly ash geopolymer concrete suitable for ambient curing", Proc. Eng., 125, 601-607. https://doi.org/10.1016/j.proeng.2015.11.077
- Neupane, K., Kidd, P., Chalmers, D., Baweja, D. and Shrestha, R. (2016), "Investigation on compressive strength development and drying shrinkage of ambient cured powder-activated geopolymer concretes", Austr. J. Civ. Eng., 14(1), 1-12. https://doi.org/10.1080/14488353.2015.1092631
- Ozer, I. and Soyer-Uzun, S. (2015), "Relations between the structural characteristics and compressive strength in metakaolin based geopolymers with different molar Si/Al ratios", Ceram., 41(8), 10192-10198. https://doi.org/10.1016/j.ceramint.2015.04.125
- Parmar, A., Patel, D.M., Chaudhari, D. and Raol, H. (2014), "Effect of alccofine and fly ash addition on the durability of high performance concrete", J. Eng. Res. Technol., 3(1), 1600-1605.
- Patil, A.A., Chore, H. and Dodeb, P. (2014), "Effect of curing condition on strength of geopolymer concrete", Adv. Concrete Constr., 2(1), 29-37. https://doi.org/10.12989/acc.2014.2.1.029
- Pawar, M. and Saoji, A. (2013), "Effect of alccofine on self-compacting concrete", J. Eng. Sci., 2(6), 5-9.
- Phoongernkham, T., Maegawa, A., Mishima, N., Hatanaka, S. and Chindaprasirt, P. (2015), "Effects of sodium hydroxide and sodium silicate solutions on compressive and shear bond strengths of FA-GBFS geopolymer", Constr. Build. Mater., 91, 1-8. https://doi.org/10.1016/j.conbuildmat.2015.05.001
- Prabu, B., Shalini, A. and Kumar, J.K. (2014), "Rice husk ash based geopolymer concrete-a review", Chem. Sci. Rev. Lett., 3, 288-294.
- Provis, J.L. and Deventer, J.S.J. (2009), Geopolymers-Structure, Processing, Properties and Industrial Applications, Woodhead Publishing Ltd., Sawston, Cambridge, U.K.
- Puertas F. Martinez-Ramiirez S. lonso, S. and Vazquez, T. (2000), "Alkali-activated fly ash/slag cements: Strength behaviour and hydration products", Cement Concrete Res., 30(10), 1625-1632. https://doi.org/10.1016/S0008-8846(00)00298-2
- Rangan, B.V., Hardjito, D., Wallah, S.E. and Sumajouw, D.M. (2005), "Studies on fly ash-based geopolymer concrete", Proceedings of the World Congress Geopolymer, Saint Quentin, France.
- Shaikh, F.U. (2014), "Effects of alkali solutions on corrosion durability of geopolymer concrete", Adv. Concrete Constr., 2(2), 109-123. https://doi.org/10.12989/acc.2014.2.2.109
- Sharma, C. and Jindal, B.B. (2015), "Effect of variation of fly ash on the compressive strength of fly ash based geopolymer concrete", IOSR J. Mech. Civ. Eng., 42-44.
- Singh, B., Ishwarya, G., Gupta, M. and Bhattacharyya, S.K. (2015), "Geopolymer concrete: A review of some recent developments", Constr. Build. Mater., 85, 78-90. https://doi.org/10.1016/j.conbuildmat.2015.03.036
- Slaty, F., Khoury, H., Rahier, H. and Wastiels, J. (2015), "Durability of alkali activated cement produced from kaolinitic clay", Appl. Clay Sci., 104, 229-237. https://doi.org/10.1016/j.clay.2014.11.037
- Suresh, G.P. and Kumar, M. (2013), "Factors influencing compressive strength of geopolymer concrete", J. Res. Eng. Technol., 372-375.
- Wallah, S. and Rangan, B.V. (2006), "Low-calcium fly ash-based geopolymer concrete: Long-term properties", Res. Report-GC2, Curtin University, Australia.
- Xie, T. and Ozbakkaloglu, T. (2015), "Behavior of low-calcium fly ash bottom ash based geopolymer concrete cured at ambient temperature", Ceram., 85, 5945-5958.
피인용 문헌
- Predicting Relationship between Mechanical Properties of Low Calcium Fly Ash-Based Geopolymer Concrete vol.76, pp.4, 2017, https://doi.org/10.1080/0371750X.2017.1412837
- Effect of fly ash and GGBS combination on mechanical and durability properties of GPC vol.5, pp.4, 2017, https://doi.org/10.12989/acc.2017.5.4.313
- Experimental study on geopolymer concrete prepared using high-silica RHA incorporating alccofine vol.5, pp.4, 2017, https://doi.org/10.12989/acc.2017.5.4.345
- Development of mix design method for geopolymer concrete vol.5, pp.4, 2017, https://doi.org/10.12989/acc.2017.5.4.377
- Strength and permeation properties of alccofine activated low calcium fly ash geopolymer concrete vol.20, pp.6, 2017, https://doi.org/10.12989/cac.2017.20.6.683
- Enhancing mechanical and durability properties of geopolymer concrete with mineral admixture vol.21, pp.3, 2017, https://doi.org/10.12989/cac.2018.21.3.345
- Performance of self-compacting geopolymer concrete with and without GGBFS and steel fiber vol.6, pp.4, 2018, https://doi.org/10.12989/acc.2018.6.4.323
- Feasibility study of ambient cured geopolymer concrete -A review vol.6, pp.4, 2017, https://doi.org/10.12989/acc.2018.6.4.387
- An Experiment Investigation on Physical and Mechanical Properties of High Strength Concrete with Suitable Admixture vol.972, pp.None, 2017, https://doi.org/10.4028/www.scientific.net/msf.972.10
- An experimental study on effect of Colloidal Nano-Silica on tetranary blended concrete vol.7, pp.2, 2017, https://doi.org/10.12989/acc.2019.7.2.107
- Effect of low-calcium fly ash on sulfate resistance of cement paste under different exposure conditions vol.7, pp.3, 2017, https://doi.org/10.12989/acc.2019.7.3.175
- Effect of ultra-fine slag on mechanical and permeability properties of Metakaolin-based sustainable geopolymer concrete vol.7, pp.4, 2017, https://doi.org/10.12989/acc.2019.7.4.231
- Mechanical and microstructural study of rice husk ash geopolymer paste with ultrafine slag vol.8, pp.3, 2017, https://doi.org/10.12989/acc.2019.8.3.217
- Experimental and microstructural assessment of ternary blended geopolymer concrete with different Na2SiO3-to-NaOH volume ratios vol.5, pp.1, 2017, https://doi.org/10.1007/s41062-020-0279-z
- Strength enhancement of concrete incorporating alccofine and SNF based admixture vol.9, pp.4, 2020, https://doi.org/10.12989/acc.2020.9.4.345
- A new geopolymeric grout blended completely weathered granite with blast-furnace slag vol.9, pp.6, 2017, https://doi.org/10.12989/acc.2020.9.6.537
- Experimental study on concrete using partial replacement of cement by Alccofine fine aggregate as iron powder vol.37, pp.p2, 2017, https://doi.org/10.1016/j.matpr.2020.07.648
- Properties of hybrid geopolymer concrete prepared using rice husk ash, fly ash and GGBS with coconut fiber vol.45, pp.p6, 2017, https://doi.org/10.1016/j.matpr.2021.01.390
- Effect of molar ratios on strength, microstructure & embodied energy of metakaolin geopolymer vol.11, pp.2, 2021, https://doi.org/10.12989/acc.2021.11.2.127
- Incorporating steel slag in the production of high heat resistant FA based geopolymer paste via pressure molding vol.325, pp.None, 2017, https://doi.org/10.1016/j.jclepro.2021.129265
- Use of alccofine-1203 in concrete: review on mechanical and durability properties vol.14, pp.6, 2021, https://doi.org/10.1080/19397038.2021.1970275