DOI QR코드

DOI QR Code

Antioxidant Effect of Zostera marina Ethanol and Water Extracts

잘피(Zostera marina) 에탄올 및 물 추출물의 항산화 효과

  • Park, Sun-Hee (Department of Food Science & Technology/Institute of Food Science, Pukyong National University) ;
  • Kim, Koth-Bong-Woo-Ri (Department of Food Science & Technology/Institute of Food Science, Pukyong National University) ;
  • Kim, Min-Ji (Department of Food Science & Technology/Institute of Food Science, Pukyong National University) ;
  • Im, Moo-Hyeog (Department of Food Science and Biotechnology, Daegu University) ;
  • Ahn, Dong-Hyun (Department of Food Science & Technology/Institute of Food Science, Pukyong National University)
  • 박선희 (부경대학교 식품공학과/식품연구소) ;
  • 김꽃봉우리 (부경대학교 식품공학과/식품연구소) ;
  • 김민지 (부경대학교 식품공학과/식품연구소) ;
  • 임무혁 (대구대학교 식품공학과) ;
  • 안동현 (부경대학교 식품공학과/식품연구소)
  • Received : 2016.10.15
  • Accepted : 2016.11.22
  • Published : 2017.03.30

Abstract

Seaweeds have a number of secondary metabolites, such as polyphenols, polysaccharides, and carotenoids, and have received much attention as a source of natural antioxidants. Thus, this study was carried out to examine the antioxidant activities from ethanol (EE) and water (WE) extracts of Zostera marina. Their antioxidant effects were investigated using total polyphenol contents (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, reducing power, and chelating effect. TPC of EE and WE was 2.12 mg/g and 3.88 mg/g, respectively. DPPH radical scavenging activities of EE and WE were increased in a dose-dependent manner. In particular, EE had DPPH radical scavenging activity of 93% at a concentration of 0.5 mg/ml, and was higher than that of WE (71%). EE and WE increased reducing power in a concentration-dependent manner, but their effects were lower than that of the control (ascorbic acid). In case of chelating effect, WE was 66% at a concentration of 1 mg/ml, and was stronger than EE (6%). These results suggest that extracts of Zostera marina can be potentially used as proper natural antioxidants in the food industry.

본 연구는 잘피 추출물로부터의 항산화 효과를 알아보았다. 총 폴리페놀 함량에서는 에탄올 추출물과 물 추출물이 각각 2.12 mg/g, 3.88 mg/g으로 측정되었다. DPPH 라디칼 소거능의 경우 에탄올 추출물이 1 mg/ml농도에서 94%로 물 추출물보다 더 높았으며 환원력은 두 추출물 모두 농도의존적인 경향을 나타냈다. 금속봉쇄력의 경우 물 추출물이 에탄올 추출물 보다 더 높았고 rancimat에 의한 산화도 측정 시 에탄올 추출물이 1 mg/ml농도에서 66%로 물 추출물보다 더 높았음을 알 수 있었다. 이러한 결과는 잘피 추출물이 식품산업에서 천연항산화제로서 사용이 될 수 있음을 보여준다.

Keywords

References

  1. Addis, P. B. and Hassel, C. A. 1992. Safety issues with antioxidants in food. In Food Safety Assessment. American Chemical Society, Washington, DC, USA.
  2. Blois, M. S. 1958. Antioxidant determinations by the use or a stable free radical. Nature 181, 1990-2100.
  3. Choi, H. G., Lee, J. H., Park, H. H. and Sayegh, F. A. Q. 2009. Antioxidant and antimicrobial activity of Zostera marina L. extract. Algae 24, 179-184. https://doi.org/10.4490/ALGAE.2009.24.3.179
  4. Feng, T., Du, Y., Li, J., Hu, Y. and Kennedy, J. F. 2008. Enhancement of antioxidant activity of chitosan by irradiation. Carbohyd. Polym. 73, 126-132. https://doi.org/10.1016/j.carbpol.2007.11.003
  5. Halliwell, B. 1996. Antioxidants in human health and disease. Annu. Rev. Nutr. 16, 33-49. https://doi.org/10.1146/annurev.nu.16.070196.000341
  6. Kim, J. B., Park, J. I., Choi, W. J., Lee, J. S. and Lee, K. S. 2010. Spatial distribution and ecological characteristics of Zostera marina and Zostera japonica in the Seomjin Estuary. Kor. J. Fish. Aquat. Sci. 43, 351-361.
  7. Kim, M. J., Choi, J. S., Song, E. J., Lee, S. Y., Kim, K. B. W. R., Lee, S. J., Kim, J. S., Yoon, S. Y., Jeon, Y. J. and Ahn, D. H. 2009. Effects of heat and pH treatment on antioxidant properties of Ishige okamurai extracts. Kor. J. Food Sci. Technol. 41, 50-56.
  8. Lee, B. B., Chun, J. H., Lee, S. H., Park, H. R., Kim, J. M., Park, E. and Lee, S. C. 2007. Antioxidative and antigenotoxic activity of extracts from Rhododendron mucromulatum turcz. flowers. J. Kor. Soc. Food Sci. Nutr. 36, 1628-1632. https://doi.org/10.3746/jkfn.2007.36.12.1628
  9. Lee, C. H., Shin, S. L., Kim, N. R. and Hwang, J. K. 2011. Comparison of antioxidant effects of different Korean pear species. Kor. J. Plant Res. 24, 253-259. https://doi.org/10.7732/kjpr.2011.24.2.253
  10. Lee, S. J., Song, E. J., Lee, S. Y., Kim, K. B. W. R., Kim, S. J., Yoon, S. Y., Lee, C. J. and Ahn, D. H. 2009. Antioxidant activity of leaf, stem and root extracts from Orostachys japonicus and their heat and pH stabilities. J. Kor. Soc. Food Sci. Nutr. 38, 1571-1579. https://doi.org/10.3746/jkfn.2009.38.11.1571
  11. Lee, S. J., Song, E. J., Lee, S. Y., Kim, K. B. W. R., Yoon, S. Y., Lee, C. J., Jung, J. Y., Park, N. B., Kwak, J. H., Park, J. G., Kim, J. H., Choi, J. I., Lee, J. W., Byun, M. W. and Ahn, D. H. 2010. Effects of gamma irradiation on antioxidant, antimicrobial activities and physical characteristics of Sargassum thunbergii extract. Kor. J. Food Sci. Technol. 42, 431-437.
  12. Martinez-Tome, M., Murcia, M. A., Frega, N., Ruggieri, S., Jimenez, A. M. and Roses, F. 2004. Evaluation of antioxidant capacity of cereal brans. J. Agr. Food Chem. 52, 4690-4699. https://doi.org/10.1021/jf049621s
  13. Michael, J. T. 2000. The role of free radicals and antioxidants. Nutrition 16, 716-718. https://doi.org/10.1016/S0899-9007(00)00343-9
  14. Oyaizu, M. 1986. Studies on products of browning reactions: Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. 44, 307-315. https://doi.org/10.5264/eiyogakuzashi.44.307
  15. Park, J. H., Bae, N. Y., Park, S. H., Kim, M. J., Kim, K. B. W. R., Choi, J. S. and Ahn, D. H. 2015. Antioxidant effect of Sargassum coreanum root and stem extracts. Kor. Soc. Biotechnol. Bioeng. J. 30, 155-160.
  16. Pilavtepe, M., Yucel, M., Helvaci, S. S., Demircioglu, M. and Yesil-Celiktas, O. 2012. Optimization and mathematical modeling of mass transfer between Zostera marina residues and supercritical $CO_2$ modified with ethanol. J. Supercrit. Fluids. 68, 87-93. https://doi.org/10.1016/j.supflu.2012.04.013
  17. Ramanathan, L. and Das, N. P. 1992. Studies on the control of lipid oxidation in ground fish by some polyphenolic natural products. J. Agric. Food. Chem. 40, 17-21. https://doi.org/10.1021/jf00013a004
  18. Shimada, K., Fujikawa, K., Yahara, K. and Nakamura, T. 1992. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 40, 945-948. https://doi.org/10.1021/jf00018a005
  19. Swain, T. and Hillis, W. E. 1959. The phenolic constituents of Prunus domestica. I-The quantitative analysis of phenolic constituents. J. Sci. Food Agric. 10, 63-68. https://doi.org/10.1002/jsfa.2740100110
  20. Wang, Y. and Xu, B. 2014. Distribution of antioxidant activities and total phenolic contents in acetone, ethanol, water and hot water extracts from 20 edible mushrooms via sequential extraction. Austin J. Nutri. Food Sci. 2, 1009.
  21. Yoo, M. A., Chung, H. K. and Kang, M. H. 2004. Optimal extract methods of antioxidant compounds from coat of grape dreg. Kor. J. Food Sci. Technol. 36, 134-140.