DOI QR코드

DOI QR Code

Evaluation of the Satellite-based Air Temperature for All Sky Conditions Using the Automated Mountain Meteorology Station (AMOS) Records: Gangwon Province Case Study

산악기상관측정보를 이용한 위성정보 기반의 전천후 기온 자료의 평가 - 강원권역을 중심으로

  • Jang, Keunchang (Center for Forest & Climate Change, Department of Forest Conservation, National Institute of Forest Science) ;
  • Won, Myoungsoo (Center for Forest & Climate Change, Department of Forest Conservation, National Institute of Forest Science) ;
  • Yoon, Sukhee (Center for Forest & Climate Change, Department of Forest Conservation, National Institute of Forest Science)
  • 장근창 (국립산림과학원 산림보전부 기후변화연구센터) ;
  • 원명수 (국립산림과학원 산림보전부 기후변화연구센터) ;
  • 윤석희 (국립산림과학원 산림보전부 기후변화연구센터)
  • Received : 2016.11.21
  • Accepted : 2017.03.06
  • Published : 2017.03.30

Abstract

Surface air temperature ($T_{air}$) is a key variable for the meteorology and climatology, and is a fundamental factor of the terrestrial ecosystem functions. Satellite remote sensing from the Moderate Resolution Imaging Spectroradiometer (MODIS) provides an opportunity to monitor the $T_{air}$. However, the several problems such as frequent cloud cover and mountainous region can result in substantial retrieval error and signal loss in MODIS $T_{air}$. In this study, satellite-based $T_{air}$ was estimated under both clear and cloudy sky conditions in Gangwon Province using Aqua MODIS07 temperature profile product (MYD07_L2) and GCOM-W1 Advanced Microwave Scanning Radiometer 2 (AMSR2) brightness temperature ($T_b$) at 37 GHz frequency, and was compared with the measurements from the Automated Mountain Meteorology Stations (AMOS). The application of ambient temperature lapse rate was performed to improve the retrieval accuracy in mountainous region, which showed the improvement of estimation accuracy approximately 4% of RMSE. A simple pixel-wise regression method combining synergetic information from MYD07_L2 $T_{air}$ and AMSR2 $T_b$ was applied to estimate surface $T_{air}$ for all sky conditions. The $T_{air}$ retrievals showed favorable agreement in comparison with AMOS data (r=0.80, RMSE=7.9K), though the underestimation was appeared in winter season. Substantial $T_{air}$ retrievals were estimated 61.4% (n=2,657) for cloudy sky conditions. The results presented in this study indicate that the satellite remote sensing can produce the surface $T_{air}$ at the complex mountainous region for all sky conditions.

지표면 기온($T_{air}$ surface air temperature)은 기상 및 기후학 분야에서 대표적인 기상인자일 뿐만 아니라 육상생태계 기능을 조절하는 주요 환경조건 인자이다. MODIS와 같은 인공위성정보 활용 기술은 지표면 기온을 연속적으로 모니터링 할 수 있는 기회를 제공한다. 하지만 복잡 산악지역에서의 관측 정확도의 한계와 구름 등에 의한 자료 결측은 연속적인 모니터링을 제한한다. 이 연구에서는 위성정보를 기반으로 복잡 산악지역에서 인 강원도 지역을 대상으로 전천후 기온정보를 생산하여 산악기상관측자료를 이용하여 평가하였다. 산악지역에 대한 정확도 개선을 위해 Aqua MODIS 기온정보(MYD07_L2)에 대기기온감률 방법을 적용한 결과, 기존보다 약 4% RMSE 개선효과(ME의 경우 95%)가 나타났다. 전천후 기온정보 산출을 위해 MYD07_L2 기온정보와 GCOM-W1 AMSR2 37 GHz 밝기온도 자료간의 픽셀 기반의 회귀모형 방법을 적용하였다. 산악기상 관측 자료와 비교한 결과 전반적으로 좋은 일치도를 보였으나(r=0.80, RMSE=7.9K), 겨울철에 다소 과소모의의 경향을 나타냈다. 그럼에도 불구하고 전체 자료 중 결측되었던 61.4%의 자료(n=2,657)를 복원하여 복잡 산악지역에 대해 위성정보 기반의 전천후 기온정보 생산이 가능함을 확인하였다. 향후 이 연구에서 사용한 간단하고 효과적인 회귀모형 방법은 과거 및 최신 위성정보를 활용을 통한 시공간적인 확장이 가능할 것으로 사료된다.

Keywords

References

  1. Aumann, H. H., M. T. Chahine, C. Gautier, M. D. Goldberg, E. Kalnay, L. M. McMillin, H. Revercomb, P. W. Rosenkranz, W. L. Smith, D. H. staelin, L. L. strow, and J. Susskind, 2003: AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems. IEEE Transactions on Geoscience and Remote Sensing 41(2), 253-264. https://doi.org/10.1109/TGRS.2002.808356
  2. Bisht, G., and R. L. Bras, 2010: Estimation of net radiation from the MODIS data under all sky conditions: Southern Great Plains case study. Remote Sensing of Environment 114(7), 1522-1534. https://doi.org/10.1016/j.rse.2010.02.007
  3. Bisht, G., V. Venturini, S. Islam, and L. Jiang, 2005: Estimation of the net radiation using MODIS (Moderate Resolution Imaging Spectroradiometer) data for clear sky days. Remote Sensing of Environment 97(1), 52-67. https://doi.org/10.1016/j.rse.2005.03.014
  4. Borbas, E. E., S. W. Seemann, A. Kern, L. Moy, J. Li, L. E. Gumley, and W. P. Menzel, 2011: MODIS atmospheric profile retrieval algorithm theoretical basis document. 1-32.
  5. Choi, G., 2011: Variability of Temperature Lapse Rate with Height and Aspect over Halla Mountain. Journal of climate research 6(3), 171-186.
  6. Choi, G., B. Lee, S. Kang, and J. Tenhunen, 2010: Variations of summertime temperature lapse rate within a mountainous basin in the Republic of Korea -A case study of Punch Bowl, Yanggu in 2009. Journal of the Korean Association of Regional Geographers 16(4), 339-354.
  7. IPCC, 2007: Climate change 2014: The physical science basis. Cambridge University Press, NY, USA.
  8. Jang, K., S. Kang, H. Kim, and H. Kwon, 2009: Evaluation of Shortwave Irradiance and Evapotranspiration Derived from Moderate Resolution Imaging Spectroradiometer (MODIS). Asia-Pacific Journal of Atmospheric Sciences 45(2), 233-246.
  9. Jang, K., S. Kang, J. S. Kimball, and K. S. Hong, 2014a: Retrievals of all-weather daily air temperature using MODIS and AMSR-E data. Remote Sensing 6, 8387-8404. https://doi.org/10.3390/rs6098387
  10. Jang, K., S. Kang, and S. Y. Hong, 2014b: Comparison of collection 5 and 6 Aqua MODIS07_L2 air and dew temperature products with groung-based observation dataset. Korean Journal of Remote Sensing, 30(5), 571-586. https://doi.org/10.7780/kjrs.2014.30.5.3
  11. Jang, K., S. Kang, Y. Lim, S. Jeong, J. Kim, J. S. Kimball, and S. Y. Hong, 2013: Monitoring daily evapotranspiration in Northeast Asia using MODIS and a regional Land Data Assimilation System. Journal of Geophysical Research Atmospheres 118(23), 12927-12940. https://doi.org/10.1002/2013JD020639
  12. Jones, L. A., C. R. Ferguson, J. S. Kimball, K. Zhang, S. T. K. Chan, K. C. McDonald, E. G. Njoku, and E. F. Wood, 2010: Satellite microwave remote sensing of daily land surface air temperature minima and maxima from AMSR-E. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 3, 111-23. https://doi.org/10.1109/JSTARS.2010.2041530
  13. Kim, D. S., and B. H. Kwon, 2007: Vertical structure of the coastal atmospheric boundary layer based on Terra/MODIS data. Atmosphere 17(3), 281-289.
  14. Lee, J., S. Kang, K. Jang, J. Ko, and S. Y. Hong, 2011: The evaluation of meteorological inputs retrieved from MODIS for estimation of gross primary productivity in the US Corn Belt Region. Korean Journal of Remote Sensing 27(4), 481-494. https://doi.org/10.7780/kjrs.2011.27.4.481
  15. Lee, S. Y., I.-U. Chung, and S. K. Kim, 2006: A study of on establishment of the optimum mountain meteorological observation network system for forest fire prevention. Korean Journal of Agricultural and Forest Meteorology 8(1), 36-44.
  16. Masuoka, E., A. Fleig, R. E. Wolfe, and F. Patt, 1998: Key characteristics of MODIS data products. IEEE Transactions on Geoscience and Remote Sensing 36(4), 1313-1323. https://doi.org/10.1109/36.701081
  17. National Institute Forest Of Science, 2017: http://mtweather.nifos.go.kr/
  18. Prihodko, L., and S. N. Goward, 1997: Estimation of air temperature from remotely sensed surface observations. Remote Sensing of Environment 60(3), 335-346. https://doi.org/10.1016/S0034-4257(96)00216-7
  19. Ryu, Y., S. Kang, S. Moon, and J. Kim, 2008: Evaluation of land surface radiation balance derived from moderate resolution imaging spectroradiometer (MODIS) over complex terrain and heterogeneous landscape on clear sky days. Agricultural and Forest Meteorology 148(10), 1538-1552. https://doi.org/10.1016/j.agrformet.2008.05.008
  20. Seemann, S. W., E. E. Borbas, J. Li, W. P. Menzel, and L. E. Gumley, 2006: MODIS atmospheric profile retrieval algorithm theoretical basis document. NASA, Greenbelt, MD, USA, 1-4.
  21. Shin, H. S., E. Chang, and S. Hong, 2014: Estimation of near surface air temperature using MODIS land surface temperature data and geostatistics. Journal of Korea Spatial Information Society 22(1), 55-63.
  22. Stisen, S., I. Sandholt, A. Norgaard, R. Fensholt, and L. Eklundh, 2007: Estimation of diurnal air temperature using MSG SEVIRI data in West Africa. Remote Sensing of Environment 110(2), 262-74. https://doi.org/10.1016/j.rse.2007.02.025
  23. Tang, B., and Z. Li, 2008: Estimation of instantaneous net surface longwave radiation from MODIS cloud-free data. Remote Sensing of Environment 112(9), 3482-3492. https://doi.org/10.1016/j.rse.2008.04.004
  24. Vogt J. V., A. A. Viau, and F. Paquet, 1997: Mapping regional air temperature fields using satellite-derived surface skin temperatures. International Journal of Climatology 17(14), 1559-1579. https://doi.org/10.1002/(SICI)1097-0088(19971130)17:14<1559::AID-JOC211>3.0.CO;2-5
  25. Williamson, S., D. Hik, J. Gamon, J. Kavanaugh, and G. Flowers, 2014: Estimating temperature fields from MODIS land surface temperature and air temperature observations in a sub-Arctic Alpine environment. Remote Sensing 6, 946-63. https://doi.org/10.3390/rs6020946