DOI QR코드

DOI QR Code

3-D Structured Cu2ZnSn (SxSe1-x)4 (CZTSSe) Thin Film Solar Cells by Mo Pattern using Photolithography

Mo 패턴을 이용한 3-D 구조의 Cu2ZnSn (SxSe1-x)4 (CZTSSe) 박막형 태양전지 제작

  • Jo, Eunjin (Optoelectronic(s) Convergence Research Center and Department of Materials Science & Engineering, Chonnam National University) ;
  • Gang, Myeng Gil (Optoelectronic(s) Convergence Research Center and Department of Materials Science & Engineering, Chonnam National University) ;
  • Shin, hyeong ho (Optoelectronic(s) Convergence Research Center and Department of Materials Science & Engineering, Chonnam National University) ;
  • Yun, Jae Ho (Photovoltaic Laboratory, Korea Institute of Energy Research) ;
  • Moon, Jong-ha (Optoelectronic(s) Convergence Research Center and Department of Materials Science & Engineering, Chonnam National University) ;
  • Kim, Jin Hyeok (Optoelectronic(s) Convergence Research Center and Department of Materials Science & Engineering, Chonnam National University)
  • 조은진 (전남대학교 신소재공학부) ;
  • 강명길 (전남대학교 신소재공학부) ;
  • 신형호 (전남대학교 신소재공학부) ;
  • 윤재호 (한국에너지기술연구원 신재생에너지연구본부) ;
  • 문종하 (전남대학교 신소재공학부) ;
  • 김진혁 (전남대학교 신소재공학부)
  • Received : 2017.02.11
  • Accepted : 2017.03.03
  • Published : 2017.03.31

Abstract

Recently, three-dimensional (3D) light harvesting structures are highly attracted because of their high light harvesting capacity and charge collection efficiencies. In this study, we have fabricated $Cu_2ZnSn(S_xSe_{1-x})_4$ based 3D thin film solar cells on PR patterned Molybdenum (Mo) substrates using photolithography technique. Specifically, Mo patterns were deposited on PR patterned Mo substrates by sputtering and the thin Cu-Zn-Sn stacked layer was deposited over this Mo patterns by sputtering technique. The stacked Zn-Sn-Cu precursor thin films were sulfo-selenized to form CZTSSe pattern. Finally, CZTSSe absorbers were coated with thin CdS layer using chemical bath deposition and ZnO window layer was deposited over CZTSSe/CdS using DC sputtering technique. Fabricated 3-D solar cells were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF) analysis, Field-emission scanning electron microscopy (FE-SEM) to study their structural, compositional and morphological properties, respectively. The 3% efficiency is achieved for this kind of solar cell. Further efforts will be carried out to improve the performance of solar cell through various optimizations.

Keywords

References

  1. Teodor K. Todorov, Kathleen B. Reuter and David B. Mitzi, "High-Efficiency Solar Cell with Earth-Abundant Liquid-Processed Absorber", ADV MATER, Vol.22, E156-E159, 2010. https://doi.org/10.1002/adma.200904155
  2. J. S. Seol, S. Y. Lee, J. C. Lee, H. D. Nam, K. H. Kim, "Electrical and optical properties of $Cu_2ZnSnS_4$ thin films prepared by rf magnetron sputtering process", Sol. Energy Mater. Sol. Cells, Vol.75, no.1-2, pp.155-162, 2003. https://doi.org/10.1016/S0927-0248(02)00127-7
  3. L. Sun, J. He, H. Kong, F. Yue, P. Yang, J. H.Chu,"Structure, composition and optical properties of $Cu_2ZnSnS_4$ thin films deposited by Pulsed Laser Deposition method", Sol. Energy Mater. Sol. Cells, Vol.95, no.10, pp.2907-2913, 2011. https://doi.org/10.1016/j.solmat.2011.06.026
  4. Kaune, G., Hartnauer, S., Scheer, R., "In situ XRD investigation of $Cu_2ZnSnSe_4$ thin film growth by thermal co-evaporation" physica status solidi (a), Vol. 211, pp. 1991-6, 2014. https://doi.org/10.1002/pssa.201330340
  5. K. Moriya, K. Tanaka, H. Uchiki, "Fabrication of $Cu_2ZnSnS_4$ thin-film solar cell prepared by pulsed laser deposition, Jpn. J. Appl. Phys. Vol.46, 9A, pp.5780-5781, 2007. https://doi.org/10.1143/JJAP.46.5780
  6. Vauche, L., Dubois, J., Laparre, A., Mollica, F., Bodeux, R., Delbos, S., Ruiz, C. M., Pasquinelli, M., Bahi, F., de Monsabert, T. G., Jaime, S., Bodnar, S., Grand, P.-P., "$Cu_2ZnSnSe_4$ thin film solar cells above 5% conversion efficiency from electrodeposited Cu Sn Zn precursors". physica status solidi (a), Vol. 211, pp. 2082-5, 2014. https://doi.org/10.1002/pssa.201300630
  7. Fangyang Liu, Fangqin Zeng, Ning Song, Liangxing Jiang, Zili Han, Zhenghua Su, Chang Yan, Xiaoming Wen, Xiaojing Hao, Yexiang Liu, "Kesterite $Cu_2ZnSn(S,Se)_4$ Solar Cells with beyond 8% Efficiency by a Sol-Gel and Selenization Process", ACS Appl. Mater. Interfaces, 7, 26, pp 14376-14383, 2015. https://doi.org/10.1021/acsami.5b01151
  8. Myeng Gil Gang, Seung Wook Shin, Chang Woo Hong, K. V. Gurav,Jihye Gwak, Jae Ho Yun, Jeong Yong Lee, Jin Hyeok Kim, "Sputtering processed highly efficient $Cu_2ZnSn(S,Se)_4$ solar cells by a low-cost, simple, environmentally friendly, and up-scalable strategy, Green Chem. 18, 700-711, 2016. https://doi.org/10.1039/C5GC02417J
  9. H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi, and T. Yokota, "Preparation films by and evaluation of $Cu_2ZnSnS_4$ thin sulfurization of E-B evaporated precursors, Sol. Energy Mater. Sol. Cells 49, 407, 1997. https://doi.org/10.1016/S0927-0248(97)00119-0
  10. Jeehwan Kim, Homare Hiroi, Teodor K. Todorov, Oki Gunawan, Masaru Kuwahara, Tayfun Gokmen, Dhruv Nair, Marinus Hopstaken, Byungha Shin, Yun Seog Lee, Wei Wang, Hiroki Sugimoto, and David B. Mitzi, "High Efficiency $Cu_2ZnSn(S,Se)_4$ Solar Cells by Applying a Double $In_2S_3/CdS$ Emitter, Adv. Mater., 26, 7427-7431 ,2014. https://doi.org/10.1002/adma.201402373
  11. Kwang Jun Ahn, "Enhanced Photon Absorption of Organic Solar Cells by Three-dimensional Metallic Structures" Journal of the Korean Physical Society, 67, No. 12, 2101-2104, 2015. https://doi.org/10.3938/jkps.67.2101
  12. Huanping Zhou, Wan-Ching Hsu, Hsin-Sheng Duan, Brion Bob, Wenbing Yang,Tze-Bin Song, Chia-Jung Hsu and Yang Yang, "CZTS nanocrystals: a promising approach for next generation thin film photovoltaics", Energy Environ. Sci., 6, 2822-2838, 2013. https://doi.org/10.1039/c3ee41627e
  13. Kyungyeon Ha, Eunseok Jang, Segeun Jang, Jong-Kwon Lee, Min Seok Jang, Hoseop Choi, Jun-Sik Cho and Mansoo Choi, "A light-trapping strategy for nanocrystalline silicon thin-film solar cells using three-dimensionally assembled nanoparticle, Nanotechnol., 27, 055403, 2016. https://doi.org/10.1088/0957-4484/27/5/055403
  14. J. B. Li, V. Chawla, and B. M. Clemens, "Investigating the role of grain boundaries in CZTS and CZTSSe thin film solar cells with canning probe microscopy", Advanced Materials, 24, No.6, 720-723 , 2012. https://doi.org/10.1002/adma.201103470
  15. G. Lindwall, S. Shang, Neal R. Kelly, T. Anderson, Zi K. Liu, "Thermodynamics of the S-Sn system: Implication for synthesis of earth abundant photovoltaic absorber materials", Solar Energy, Vol.125 , 314-323, 2016. https://doi.org/10.1016/j.solener.2015.12.013