DOI QR코드

DOI QR Code

ADVANTAGES OF THE AKARI FIR ALL-SKY MAPS

  • Doi, Yasuo (Department of Earth Science and Astronomy, University of Tokyo) ;
  • Takita, Satoshi (Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency) ;
  • Ootsubo, Takafumi (Department of Earth Science and Astronomy, University of Tokyo) ;
  • Arimatsu, Ko (Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency) ;
  • Tanaka, Masahiro (Center for Computational Sciences, University of Tsukuba) ;
  • Morishima, Takahiro (Astronomical Institute, Tohoku University) ;
  • Kawada, Mitsunobu (Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency) ;
  • Matsuura, Shuji (Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency) ;
  • Kitamura, Yoshimi (Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency) ;
  • Hattori, Makoto (Astronomical Institute, Tohoku University) ;
  • Nakagawa, Takao (Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency) ;
  • White, Glenn (Department of Physical Sciences, The Open University) ;
  • Ikeda, Norio (Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency)
  • Received : 2015.07.21
  • Accepted : 2016.10.27
  • Published : 2017.03.31

Abstract

We present the AKARI far-infrared (FIR) all-sky maps and describe its characteristics, calibration accuracy and scientific capabilities. The AKARI FIR survey has covered 97% of the whole sky in four photometric bands, which cover continuously 50-180 micron with band central wavelengths of 65, 90, 140, and 160 microns. The data have been publicly released in 2014 (Doi et al., 2015) with improved data quality that have been achieved since the last internal data release (Doi et al., 2012). The accuracy of the absolute intensity is ${\leq}10%$ for the brighter regions. Quantitative analysis of the relative intensity accuracy and its dependence upon spatial scan numbers has been carried out. The data for the first time reveal the whole sky distribution of interstellar matter with arcminute-scale spatial resolutions at the peak of dust continuum emission, enabling us to investigate large-scale distribution of interstellar medium in great detail. The filamentary structure covering the whole sky is well traced by the all-sky maps. We describe advantages of the AKARI FIR all-sky maps for the study of interstellar matter comparing to other observational data.

Keywords

References

  1. Andre, P. 2013, The Herschel View of Star Formation, arXiv:1309.7762
  2. Boggess, N. W., Mather, J. C., Weiss, R., et al. 1992, The COBE mission: Its design and performance two years after launch, ApJ, 397, 420 https://doi.org/10.1086/171797
  3. Compiegne, M., Verstraete, L., Jones, A., et al. 2011, The global dust SED: tracing the nature and evolution of dust with DustEM, A&Ap, 525, A103 https://doi.org/10.1051/0004-6361/201015292
  4. Doi, Y., Komugi, S., Kawada, M., et al. 2012, Akari Far-Infrared All-Sky Survey Maps, Publication of Korean Astronomical Society, 27, 111 https://doi.org/10.5303/PKAS.2012.27.4.111
  5. Doi, Y., Takita, S., Ootsubo, T., et al. 2015, The AKARI far-infrared all-sky survey maps, PASJ, 67, 50 https://doi.org/10.1093/pasj/psv022
  6. Draine, B. T., & Li, A. 2007, Infrared Emission from Interstellar Dust. IV. The Silicate-Graphite-PAH Model in the Post-Spitzer Era, ApJ, 657, 810 https://doi.org/10.1086/511055
  7. Meisner, A. M., & Finkbeiner, D. P. 2014, Modeling Thermal Dust Emission with Two Components: Application to the Planck HFI Maps, ApJ, 781, 5
  8. Neugebauer, G., Habing, H. J., van Duinen, R., et al. 1984, The Infrared Astronomical Satellite (IRAS) mission, ApJL, 278, L1 https://doi.org/10.1086/184209
  9. Okabe, T., Kashiwagi, T., Suto, Y., et al. 2015, Image Stacking Analysis of SDSS Galaxies with AKARI Far-Infrared Surveyor Maps at $65{\mu}m$, $90{\mu}m$, and $140{\mu}m$, accepted for publication in PASJ, arXiv:1512.02768
  10. Pilbratt, G. L., Riedinger, J. R., Passvogel, T., et al. 2010, Herschel Space Observatory. An ESA facility for far-infrared and submillimetre astronomy, A&Ap, 518, L1 https://doi.org/10.1051/0004-6361/201014759
  11. Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2011, Planck early results. I. The Planck mission, A&Ap, 536, A1 https://doi.org/10.1051/0004-6361/201116464
  12. Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2011, Planck early results. XIX. All-sky temperature and dust optical depth from Planck and IRAS. Constraints on the "dark gas" in our Galaxy, A&Ap, 536, A19 https://doi.org/10.1051/0004-6361/201116479
  13. Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2014, Planck 2013 results. I. Overview of products and scientic results, A&Ap, 571, A1 https://doi.org/10.1051/0004-6361/201321529
  14. Planck Collaboration, Abergel, A., Ade, P. A. R., et al. 2014, Planck 2013 results. XI. All-sky model of thermal dust emission, A&Ap, 571, A11 https://doi.org/10.1051/0004-6361/201323195
  15. Planck Collaboration, Ade, P. A. R., Aghanim, N., Alves, M. I. R., et al. 2014, Planck intermediate results. XXIX. All-sky dust modelling with Planck, IRAS, and WISE observations, arXiv:1409.2495
  16. Sousbie, T. 2013, DisPerSE: robust structure identication in 2D and 3D, arXiv:1302.6221
  17. Takita, S., Doi, Y., Arimatsu, K., et al. 2015, Calibration of the AKARI far-infrared all-sky survey maps, PASJ, 67, 51 https://doi.org/10.1093/pasj/psv033
  18. Takita, S., Doi, Y., Ootsubo, T., et al. 2015, FIR VIEW OF DISKS OF WEAK-LINE T TAURI STARS, this volume.
  19. Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., et al. 2010, The Wide-eld Infrared Survey Explorer (WISE): Mission Description and Initial On-orbit Performance, AJ, 140, 1868 https://doi.org/10.1088/0004-6256/140/6/1868