DOI QR코드

DOI QR Code

Tiny Magnetic Robot Mechanism and Manipulation for Stent Transportation and Installation

  • Yu, Chang-Ho (Department of Convergence Technology Engineering, Chonbuk National University) ;
  • Kim, Sung Hoon (Department of Electronics Convergence Engineering, Wonkwang University)
  • Received : 2017.03.06
  • Accepted : 2017.03.16
  • Published : 2017.03.31

Abstract

Magnetic spiral-type microrobots, which are driven by a rotating magnetic field, have excellent locomotive abilities, whereas their medical applications are limited in the terms of function, such as the ability to drill in blood vessels. In this study, we propose a new robot with superior applications using a magnetic spiral-type machine. The proposed robot can be applied to stent transportation and installation without a catheter. In particular, the robot can be applied to the cardiovascular system, cerebrovascular disease, and nonvascular stent applications depending on the robot size. The robot consists of two independent spiral-type machines and four magnets in total. We controlled directions of thrust force of the two machines, respectively, for active locomotion with a task. We conducted a preliminary validation of the proposed robot for stent transportation and installation through experimental analyses.

Keywords

References

  1. J. J. Abbott, K. E. Peyer, M. C. Lagomarsino, L. Zhang, L. X. Dong, I. K. Kaliakatsos, and B. J. Nelson, Int. J. Robot. Res. 28, 1434 (2009). https://doi.org/10.1177/0278364909341658
  2. A. Ghosh and P. Fischer, Nano Lett. 9, 2243 (2009). https://doi.org/10.1021/nl900186w
  3. B. J. Nelson, I. K. Kaliakatsos, and J. J. Abbott, Annual Review of Biomedical Engineering 12, 55 (2010). https://doi.org/10.1146/annurev-bioeng-010510-103409
  4. S. H. Kim and K. Ishiyama, IEEE/ASME Trans. Mechatronics 19, 1651 (2014). https://doi.org/10.1109/TMECH.2013.2292595
  5. C. H. Yu and S. H. Kim, J. Magn. 21, 616 (2016). https://doi.org/10.4283/JMAG.2016.21.4.616
  6. L. Zhang, J. Abbott, L. Dong, K. D. Bell, and B. J. Nelson, Appl. Phys. Lett. 94, 064017 (2009).
  7. S. M. Jeong and G. H. Jang, IEEE Trans. Magn. 48, 4062 (2012). https://doi.org/10.1109/TMAG.2012.2194480
  8. S. Pane, O. Ergeneman, K. M. Sivaraman, T. Luhmann, H. Hall, and B. J. Nelson, Proc. IEEE Int' Conf. Nano/ Molecular Medicine and Engineering (2010) pp. 148152.
  9. S. Yim and M. Sitti, IEEE Trans. Robotics 28, 183 (2012). https://doi.org/10.1109/TRO.2011.2163861
  10. M. Sendoh, K. Ishiyama, and K. I. Arai, IEEE Trans. Magn. 39, 3232 (2003). https://doi.org/10.1109/TMAG.2003.816731
  11. Y. H. Kim, X. Xu, and J. S. Lee, Annals of Biomedical Engineering 38, 2274 (2010). https://doi.org/10.1007/s10439-010-9994-5
  12. K. Ishiyama, M. Sendoh, A. Yamazaki, and K. I Arai, Sensors and Actuators A 91, 141 (2001). https://doi.org/10.1016/S0924-4247(01)00517-9
  13. S. H. Kim, K. S. Shin, S. Hashi, and K. Ishiyama, IEEE Trans. Magn. 49, 3488 (2013). https://doi.org/10.1109/TMAG.2012.2237544
  14. S. H. Kim, J. W. Shin, and K. Ishiyama, IEEE Trans. Magn. 50, 9100404-1-4 (2014).
  15. C. H. Yu and S. H. Kim, J. Magn. 21, 616 (2016). https://doi.org/10.4283/JMAG.2016.21.4.616
  16. D. Vokoun, M. Beleggia, L. Heller, and P. Sittner, J. Magn. Magn. Mater. 321, 3758 (2009). https://doi.org/10.1016/j.jmmm.2009.07.030