References
- H. Degn and D. E. F. Harrisson, Theory of oscillations of respiration rate in continuous culture of klebsiella aerogenes, J. Theoret. Biol. 22 (1969), no. 22, 238-248. https://doi.org/10.1016/0022-5193(69)90003-4
- B. D. Hassard, N. D. Kazarinoff, and Y. H. Wan, Theory and Applications of Hopf Bifurcation, volume 41 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 1981.
- S. Li, J. Wu, and Y. Dong, Turing patterns in a reaction-diffusion model with the Degn-Harrison reaction scheme, J. Differential Equations 259 (2015), no. 5, 1990-2029. https://doi.org/10.1016/j.jde.2015.03.017
- R. Peng, F. Q. Yi, and X. Q. Zhao, Spatiotemporal patterns in a reaction-diffusion model with the Degn-Harrison reaction scheme, J. Differential Equations 254 (2013), no. 6, 2465-2498. https://doi.org/10.1016/j.jde.2012.12.009
- A. M. Turing, The chemical basis of morphogenesis, Philos. Trans. Roy. Soc. London Ser. B 237 (1952), no. 641, 37-72. https://doi.org/10.1098/rstb.1952.0012
- J. Wang, J. Shi, and J. Wei, Dynamics and pattern formation in a diffusive predator-prey system with strong Allee effect in prey, J. Differential Equations 251 (2011), no. 4-5, 1276-1304. https://doi.org/10.1016/j.jde.2011.03.004
- S. Wiggins and M. Golubitsky, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer, 1990.
- F. Yi, J. Wei, and J. Shi, Diffusion-driven instability and bifurcation in the Lengyel-Epstein system, Nonlinear Anal. Real World Appl. 9 (2008), no. 3, 1038-1051. https://doi.org/10.1016/j.nonrwa.2007.02.005
- F. Yi, J. Wei, and J. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, J. Differential Equations 246 (2009), no. 5, 1944-1977. https://doi.org/10.1016/j.jde.2008.10.024