References
- A. Aral, V. Gupta, and R. P. Agarwal, Application of q-Calculus in Operator Theory, Springer, 2013.
- Q. M. Cai and X. M. Zeng, On the convergence of a kind of a modified q-Gamma operators, J. Comput. Anal. Appl. 15 (2013), no. 5, 826-832.
- W. Z. Chen and S. S. Guo, On the rate of convergence of the gamma operator for functions of bounded variation, Approx. Theory Appl. 1 (1985), no. 5, 85-96.
- R. A. DeVore and G. G. Lorentz, Construtive Approximation, Springer, Berlin 1993.
- Z. Finta and V. Gupta, Approximation properties of q-Baskakov operators, Cent. Eur. J. Math. 8 (2010), no. 1, 199-211. https://doi.org/10.2478/s11533-009-0061-0
- N. K. Govil and V. Gupta, q-Beta-Szasz-Stancu operators, Adv. Stud. Contemp. Math. 22 (2012), no. 1, 117-123.
- V. Gupta and R. P. Agarwal, Convergence Estimates in Approximation Theory. VIII, Springer, New York, 2014.
- V. Gupta and T. Kim, On the rate of approximation by q modified beta operators, J. Math. Anal. Appl. 377 (2011), no. 2, 471-480. https://doi.org/10.1016/j.jmaa.2010.11.021
- V. Gupta and T. Kim, On a q-analog of the Baskakov basis fuctions, Russ. J. Math. Phys. 20 (2013), no. 3, 276-282. https://doi.org/10.1134/S1061920813030035
- V. Kac and P. Cheung, Quantum Calculus, Universitext, Springer, New York, 2002.
- H. Karsli, Rate of convergence of new Gamma type operators for functions with derivatives of bounded variation, Math. Comput. Modelling 45 (2007), no. 5-6, 617-624. https://doi.org/10.1016/j.mcm.2006.08.001
- P. P. Korovkin, Linear Operators and Approximation Theory, Hindustan Publ. Corp., India, 1960.
- N. I. Mahmudov, On q-parametric Szasz-Mirakjan operators, Mediterr. J. Math. 7 (2010), no. 3, 297-311. https://doi.org/10.1007/s00009-010-0037-0
- N. I. Mahmudov and P. Sabancigil, q-Parametric Bleimann Butzer and Hahn operators, J. Inequal. Appl. 2008 (2008), Article ID 816377, 15 pp.
- G. M. Phillips, Bernstein polynomials based on the q-integers The Heritage of P. L. Chebyshew: A Festschrift in honor of the 70th-birthday of Professor T. J. Rivlin, Ann. Numer. Math. 4 (1997), no. 1-4, 511-518.
- D. D. Stancu, Approximation of functions by a new class of linear polynomials operators, Rev. Roumaine Math. Pures Appl. 13 (1968), no. 8, 1173-1194.
-
V. Totik, The Gamma operators in
$L_p$ spaces, Publ. Math. 32 (1985), 43-55. - T. Trif, Meyer-Konig and Zeller operators based on the q-integers, Rev. Anal. Numer. Theor. Approx. 158 (2002), 221-229.
- V. S. Videnskii, On some class of q-parametric positive operators, Operator Theory:Advances and Application 158 (2005), 213-222.
- X. W. Xu and J. Y. Wang, Approximation properties of modified Gamma opeartos, J. Math. Anal. Appl. 332 (2007), no. 2, 798-813. https://doi.org/10.1016/j.jmaa.2006.10.065
- I. Yuksel and N. Ispir, Weighted approximation by a certain family of summation integral-type operators, Comput. Math. Appl. 52 (2006), no. 10-11, 1463-1470. https://doi.org/10.1016/j.camwa.2006.08.031
- X. M. Zeng, Approximation properties of Gamma opeartos, J. Math. Anal. Appl. 311 (2005), no. 2, 389-401. https://doi.org/10.1016/j.jmaa.2005.02.051
Cited by
- -Analogue of Gamma Operators vol.2019, pp.2314-8888, 2019, https://doi.org/10.1155/2019/9607517