DOI QR코드

DOI QR Code

충격파관을 이용한 메탄/산소 혼합기의 점화지연시간 측정

Measurement of Ignition Delay Time of Methane/Oxygen Mixtures by Using a Shock Tube

  • Han, Hee Sun (Department of Mechanical Engineering, Sejong University) ;
  • Wang, YuanGang (Department of Mechanical Engineering, Sejong University) ;
  • Kim, Chul Jin (Department of Mechanical Engineering, Sejong University) ;
  • Sohn, Chae Hoon (Department of Mechanical Engineering, Sejong University)
  • 투고 : 2017.01.04
  • 심사 : 2017.02.15
  • 발행 : 2017.03.30

초록

Ignition delay time of methane/oxygen mixture is measured experimentally with the shock tube in order to obtain the data for high pressure conditions where gas turbines and internal combustion engines are operating. The shock tube experiment is validated first over the temperature range of 1400-2000 K at 10 bar and with the various equivalence ratios of 0.5, 1 and 2. The measured ignition delays are compared with the data from the literatures. And then, experiments are conducted for non-explored conditions, i.e., at 40 bar and with the equivalence ratio of 1.5. The present experimental data show a good agreement with the available ones from the literatures and reasonable dependence on pressure and equivalence ratio. In addition, the effects of the temperature and equivalence ratio on ignition delay time are analyzed.

키워드

참고문헌

  1. O. Edenhofer, K. Seyboth, Intergovernmental panel on climate change (IPCC), (2013) 48-56.
  2. S.B. Jee, W.K. Kim, K.S. Shin, Shock Tube and Modeling Study of Ignition in Methane. J. Korean Chem. Soc., 43(2) (1999) 156-160.
  3. M. Klell, H. Eichlseder, M. Sartory, Variable mixtures of hydrogen and methane in the internal combustion engine of a prototype vehicle: regulations, safety and potential. Int. J. Veh. Des., 54(2) (2010) 137-155. https://doi.org/10.1504/IJVD.2010.035356
  4. J. Alanen, E. Saukko, K. Lehtoranta, T. Murtonen, H. Timonen, R. Hillamo, T. Ronkko, The formation and physical properties of the particle emissions from a natural gas engine, Fuel, 162 (2015) 155-161. https://doi.org/10.1016/j.fuel.2015.09.003
  5. E. Sendzikiene, A. Rimkus, M. Melaika, V. Makareviciene, Impact of biomethane gas on energy and emission characteristics of a spark ignition engine fuelled with a stoichiometric mixture at various ignition advance angles, Fuel, 162 (2015) 194-201. https://doi.org/10.1016/j.fuel.2015.09.019
  6. J. de Vries, E.L. Petersen, Autoignition of methane-based fuel blends under gas turbine conditions, Proc. Combust. Inst., 31 (2007) 3163-3171. https://doi.org/10.1016/j.proci.2006.07.206
  7. E.L. Petersen, J.M. Hall, S.D. Smith, J. de Vries, A.R. Amadio, M.W. Crofton, Ignition of lean methane-based fuel blends at gas turbine pressures, J. Eng. Gas Turbines Power, 129 (2007) 937-944. https://doi.org/10.1115/1.2720543
  8. F. Catapano, S. Di Iorio, A. Magno, P. Sementa, B.M. Vaglieco, A comprehensive analysis of the effect of ethanol, methane and methane-hydrogen blend on the combustion process in a PFI (port fuel injection) engine, Energy, 88 (2015) 101-110. https://doi.org/10.1016/j.energy.2015.02.051
  9. K. Nanthagopal, R. Subbarao, T. Elango, P. Baskar, K. Annamalai, Hydrogen enriched compressed natural gas (HCNG): a futuristic fuel for internal combustion engines, Therm. Sci., 15 (2011) 1145-1154. https://doi.org/10.2298/TSCI100730044N
  10. G.B. Skinner, R.A. Ruehrwein, Shock tube studies on the pyrolysis and oxidation of methane, J. Phys. Chem., 63 (1959) 1736-1742. https://doi.org/10.1021/j150580a040
  11. A.B. Mansfield, M.S. Wooldridge, H. Di, X. He, Low-temperature ignition behavior of iso-octane, Fuel, 139 (2015) 79-86. https://doi.org/10.1016/j.fuel.2014.08.019
  12. J. Zador, C.A. Taatjes, R.X. Fernandes, Kinetics of elementary reactions in low-temperature autoignition chemistry, prog. Energy Combust. Sci., 37 (2011) 371-421. https://doi.org/10.1016/j.pecs.2010.06.006
  13. C.K. Westbrook, F.L. Dryer, Chemical kinetic modeling of hydrocarbon combustion, Prog. Energy Combust. Sci., 10 (1984) 1-57. https://doi.org/10.1016/0360-1285(84)90118-7
  14. A. Lifshitz, K. Scheller, A. Burcat, G.B. Skinner, Shock-tube investigation of ignition in methane-oxygen-argon mixtures, Combust. Flame., 16 (1971) 311-321. https://doi.org/10.1016/S0010-2180(71)80102-5
  15. D.F. Davidson, R.K. Hanson, Interpreting shock tube ignition data, Int. J. Chem. Kinet., 36 (2004) 510-523. https://doi.org/10.1002/kin.20024
  16. D. Healy, H.J. Curran, J.M. Simmie, D.M. Kalitan, C.M. Zinner, A.B. Barrett, G. Bourque, Methane/ethane/propane mixture oxidation at high pressures and at high, intermediate and low temperatures, Combust. Flame., 155(3) (2008) 441-448. https://doi.org/10.1016/j.combustflame.2008.07.003
  17. H.S. Glick, W. Squire, A. Hertzberg, A new shock tube technique for the study of high temperature gas phase reactions, Symp. (Int.) Combust., 5 (1955) 393-402. https://doi.org/10.1016/S0082-0784(55)80052-5
  18. D. Healy, D.M. Kalitan, C.J. Aul, E.L. Petersen, G. Bourque, H.J. Curran, Oxidation of C1-C5 alkane quinternary natural gas mixtures at high pressures, Energy Fuels, 24 (2010) 1521-1528. https://doi.org/10.1021/ef9011005
  19. E.L. Petersen, M. Rohrig, D.F. Davidson, R.K. Hanson, C.T. Bowman, High-pressure methane oxidation behind reflected shock waves, Proc. Combust. Inst., 26 (1996) 799-806. https://doi.org/10.1016/S0082-0784(96)80289-X
  20. L.J. Spadaccini, M.B. Colket, Ignition delay characteristics of methane fuels, prog. Energy Combust. Sci., 20 (1994) 431-460. https://doi.org/10.1016/0360-1285(94)90011-6
  21. J.M. Simmie, Detailed chemical kinetic models for the combustion of hydrocarbon fuels, Prog. Energy Combust. Sci., 29 (2003) 599-634. https://doi.org/10.1016/S0360-1285(03)00060-1
  22. H.El. Merhubi, A. Keromnes, G. Catalano, B. Lefort, L.L. Moyne, A high pressure experimental and numerical study of methane ignition, Fuel, 177 (2016) 164-172. https://doi.org/10.1016/j.fuel.2016.03.016
  23. Y. Zhang, Z. Huang, L. Wei, J. Zhang, C.K. Law, Experimental and modeling study on ignition delays of lean mixtures of methane, hydrogen, oxygen, and argon at elevated pressures, Combust. Flame., 159 (2012) 918-931. https://doi.org/10.1016/j.combustflame.2011.09.010
  24. C. Tang, L. Wei, J. Zhang, X. Man, Z. Huang, Shock tube measurements and kinetic investigation on the ignition delay times of methane/dimethyl ether mixtures, Energy Fuels, 26(11) (2012) 6720-6728. https://doi.org/10.1021/ef301339m
  25. R.K. Hanson, Shock Tube Techniques, Lecture Note 11, Combution Energy Frontier Research Center of Princeton University, (2013) 1-38.
  26. Y.G. Wang, C.J. Kim, C.H. Sohn, I.S. Jeung, A Numerical Study on Pressure Variation in a Shock Tube by Changing the Diameter Ratio of Low-Pressure (Driven) to High-Pressure (Driver) Part, J. Korean Soc. Combust., 21(4) (2016) 16-22. https://doi.org/10.15231/JKSC.2016.21.4.016