DOI QR코드

DOI QR Code

CFD-EFD Mutual Validation Using a CFD Solver Based on Unstructured Meshes Developed at KAIST

KAIST 비정렬격자 기반 CFD 해석자를 이용한 CFD-EFD 상호 비교 검증

  • Jung, Seongmun (Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology) ;
  • Han, Jaeseong (Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kwon, Oh Joon (Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology)
  • Received : 2016.11.08
  • Accepted : 2017.01.17
  • Published : 2017.03.01

Abstract

Flow fields around a KARI-11-180 airfoil, SDM and transonic body are numerically simulated by using an unstructured meshes based compressible flow solver developed at KAIST. RANS equations are solved to analyse the flow fields and Roe's FDS method is adopted to evaluate convective fluxes. Turbulence effect of the flow fields is modeled by a SA model, SST model and ${\gamma}-{\widetilde{Re}}_{{\theta}t}$ model. It is found that smaller drag coefficients are predicted for the KARI-11-180 airfoil when a transition phenomenon is considered and small deviations exist between CFD and EFD results. For the SDM, flow separation is observed at a leading edge and calculated aerodynamic properties show similar tendencies to experimental results. A shock wave on main wings of the transonic body is successfully captured by the present flow solver at a Mach number 0.9. Estimated pressure profiles by means of the present CFD method also agree well with those of wind tunnel results.

본 연구에서는 카이스트에서 개발된 비정렬격자 기반의 유동 해석자를 이용하여 KARI-11-180 익형, SDM과 천음속 비행체 주변 유동장에 대한 수치해석을 수행하였다. 유동장을 해석하기 위하여 RANS가 수치적으로 풀이되었으며, Roe가 제안한 FDS 방법을 사용하여 비점성 플럭스를 계산하였다. 난류 모델은 SA 모델, SST 모델, ${\gamma}-{\widetilde{Re}}_{{\theta}t}$모델이 사용되었다. KARI-11-180 익형 유동 해석 결과 천이현상을 고려하였을 때 항력 계수가 더 작게 예측되었으며, 계산된 공력 특성은 전반적으로 실험 결과와 잘 일치하였다. SDM의 경우 날개 앞전에서 유동 박리현상이 발생하였으며, 계산된 공력 특성이 EFD 결과와 유사한 경향을 보였다. 천음속 비행체의 경우 자유류 마하수가 0.9일 때 주 날개에서 발생하는 충격파를 성공적으로 포착하였으며, 실험 결과와 해석된 결과 사이의 유사성을 확인하였다.

Keywords

References

  1. Hwang, J. Y., Jung, M. K, and Kwon, O. J., "Numerical Study of Aerodynamic Performance of a Multirotor Unmanned-Aerial- Vehicle Configuration," Journal of Aircraft, Vol. 52, No. 3, 2015, pp. 839-846. https://doi.org/10.2514/1.C032828
  2. DalBello, T., Georgiadis, N. J., Yoder, D. A., Keith, T. G., "Computational study of axisymmetric off-design nozzle flows," AIAA paper 2004-0530, 2004.
  3. P. L. Roe, "Approximate Riemann Solvers, Parameter Vectors and Difference Schemes," Journal of Computational Physics, Vol. 43, 1981, pp. 357-372. https://doi.org/10.1016/0021-9991(81)90128-5
  4. Harten, Amiram, Peter D. Lax, and Bram Van Leer.n "On upstream differencing and Godunov-type schemes for hyperbolic conservation laws," SIAM Review, Vol. 25, No. 1, 1997, pp. 53-79.
  5. V. Venkatakrishnan, "Convergence to Steady State Solutions of the Euler Equations on Unstructured Grids with Limiters," Journal of Computational Physics, Vol. 118, 1995, pp. 120-130. https://doi.org/10.1006/jcph.1995.1084
  6. P. R. Spalart and S. R. Allmaras, "A one-Equation Turbulent Model for Aerodynamic Flows," AIAA paper 92-0439, 1992.
  7. Menter, Florian R., "Two-equation eddy-viscosity turbulence models for engineering applications," AIAA journal, Vol. 32, No.8, 1994, pp. 1598-1605. https://doi.org/10.2514/3.12149
  8. Langtry, Robin B., and Florian R. Menter., "Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes," AIAA journal, Vol. 47, No. 12, 2009, pp. 2894-2906. https://doi.org/10.2514/1.42362
  9. Huptas, M., & Elsner, W., "Steady and Unsteady Simulation of Flow Structure of Two Surface-mounted Square Qbstacles," Task quarterly, Vol. 12, No.3, 2008, pp. 197-207.