DOI QR코드

DOI QR Code

Ornithopter actuator characteristics analysis by motion capture experiment

모션캡쳐 실험을 통한 조류모방 날갯짓 비행체 구동 특성 분석

  • Gim, Hakseong (Department of Aerospace Engineering, Chungnam National University) ;
  • Kim, Seungkeun (Department of Aerospace Engineering, Chungnam National University) ;
  • Suk, Jinyoung (Department of Aerospace Engineering, Chungnam National University)
  • Received : 2016.08.12
  • Accepted : 2017.01.26
  • Published : 2017.03.01

Abstract

This paper analyzes actuator characteristics for main wing and tail surfaces of an ornithopter by using a motion capture test. Experiments with the ornithopter are conducted indoor, and its fuselage is held on a jig to reduce interaction with vibration generated by flapping motion. The motion capture system detects the movement of markers attached on the main wing and tail wing tip. Experimental results show that the main wings tend to change its amplitude according to the flapping frequency, and the lift and thrust generation simulation is implemented by applying the experimental results and the ornithopter specification to Modified Strip Theory. Step input excitation is applied for experimental analysis of the tail wing in horizontal and vertical directions. As a result, horizontal and vertical tail wings have different characteristics in terms of overshoot, final value, damping ratio and natural frequency because they have different wing structures and linkages.

본 논문에서는 모션캡쳐 카메라를 사용한 실험을 통해 날갯짓 비행체의 주 날개, 꼬리날개 구동기 특성 분석에 대하여 기술하였다. 실험은 빛이 차단된 실내에서 진행되었고 지그에 기체를 고정하여 날갯짓으로 인한 영향을 줄였다. 주 날개와 꼬리날개 끝단에 마커를 부착하였고 모션캡쳐 카메라는 입력 신호에 대한 각각의 반응을 측정한다. 실험 결과 주 날개는 날갯짓의 주파수에 따라 진폭이 변하는 경향을 보였고, Modified Strip Theory에 실험 결과와 비행체 제원을 적용하여 양력 및 추력 발생 시뮬레이션을 구현 하였다. 꼬리날개는 종 횡축별로 스텝 신호를 인가하여 이에 따른 결과를 2차 전달함수 형태로 정의하였고, 각 축별로 구동기의 구조 차이로 인하여 최종 응답시간, 오버슈트, 최대값 등에서 차이를 나타내는 것을 확인하였다.

Keywords

References

  1. Jung, H.K., Lee, H.G., and Park, G.J., " Fabrication of Flapping Wing Air Vehicles for Hovering Flight," KSME Spring Conference, 2015, pp.1935-1939.
  2. L. White, Eilmer of malmesbury, an eleventh century aviator: A case study of technological innovation, its context and tradition, Technology and Culture 2 1961, pp.91-111.
  3. D. Arasse, L. da Vinci, Leonardo Da Vinci:, Konecky&Konecky, 1998
  4. Gim, H.S., Kim, S.K., Cho. S.B., "Ornithopter actuator analysis using motion capture camera and simulation," 31st ICROS Annual Conference 2016, pp 183-184.
  5. Percin, M., H. E. Eisma, J. H. S. de Baar, B.W. van Oudheusden, B. Remes, R. Ruijsink, and C. de Wagter. "Wake reconstruction of flapping-wing MAV DelFly II in forward flight." In International Micro Air Vehicle Conference and Flight Competition. 2012.
  6. Jackowski, Zachary John. "Design and construction of an autonomous ornithopter." PhD diss., Massachusetts Institute of Technology, 2009
  7. Teoh, Zhi Ern, Sawyer B. Fuller, Pakpong Chirarattananon, N. O. Prez-Arancibia, Jack D. Greenberg, and Robert J. Wood. "A hovering flapping-wing microrobot with altitude control and passive upright stability." IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, pp. 3209-3216.
  8. M. Ramasamy, J. G. Leishman, T. E. Lee, "Flow field of a rotation-wing micro air vehcile," Journal of aircraft, vol. 44, 2007, pp.1236-1244. https://doi.org/10.2514/1.26415
  9. Kim, D.G., Han, J.H., "An Aerodynamic Model of Flapping-wing Aircraft Using Modified Strip Theory," KSAS Spring Conference, 2007, pp.25-28.
  10. Armanini, S.F., de Visser, C.C. and De Croon, G.C.H.E., "Black-box LTI modelling of flapping-wing micro aerial vehicle dynamics." AIAA conference, 2015.
  11. Gim, H.S., Kim, S.K., Cho. S.B., "Longitudinal System Identification of Ornihtopter by Automated Flight Test" KSAS Fall Conference, 2015
  12. Djojodihardjo, Harijono, and Alif Syamim Syazwan Ramli. "FLIGHT DYNAMIC MODELLING AND NUMERICAL SIMULATION OF A FLAPPING WING ORNITHOPTER WITH PITCHING AND FLAPPING PHASE LAG."
  13. Malik, M. Afzaal, and Farooq Ahmad. "Effect of different design parameters on lift, thrust, and drag of an ornithopter." Proceedings of the World Congress on Engineering, vol. 2. 2010.
  14. Gim, H.S., Kim, S.K., Yu, Y.A. "Analysis on actuator characteristics for an ornithopter," KSME Spring Conference, 2016, pp 42-45.
  15. Harmon, R. L. "Aerodynamic modeling of a flapping membrane wing using motion tracking experiments." ProQuest, 2008.
  16. Norman, S. N., "Control Systems Engineering Fifth Edition", WILEY, 2010, pp. 156-180.