DOI QR코드

DOI QR Code

열방어구조의 다공성 단열재 유효 열전도율 예측 모델링

Prediction Modeling on Effective Thermal Conductivity of Porous Insulation in Thermal Protection System

  • Hwang, Kyung-Min (Graduate School of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Kim, Yong-Ha (Graduate School of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Kim, Myung-Jun (Graduate School of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Lee, Hee-Soo (Graduate School of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Park, Jung-Sun (Department of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • 투고 : 2016.09.21
  • 심사 : 2016.12.03
  • 발행 : 2017.03.01

초록

다공성 단열재는 탁월한 단열 효과로 단열공간을 최소화하여, 기존 단열재 대비 내부 공간을 활용할 수 있어 여러 산업 분야에서 사용되고 있다. 특히 높은 단열 효과뿐만 아니라 경량화가 요구되는 항공우주 산업분야에서는 이와 같은 다공성 단열재의 수요가 증가하고 있다. 본 논문에서는 다공성 단열재의 정확도가 높은 유효 열전도율 예측 모델을 새롭게 제안하고, 기존 예측 모델 및 시험 결과와 비교 검증하였다. 이를 위해, 기존 유효 열전도율 예측 모델에 대하여 문헌조사를 수행하였고, 다공성 단열재의 고체 부피율에 따른 열전도율 시험결과 값과 비교하였다. 또한 유효 열전도율 시험 결과와 비교하여 가장 높은 정확도를 가진 Zehner-Schlunder 모델 및 시험 결과 데이터를 기반으로 새로운 유효 열전도율 예측 모델을 정의하였으며, 시험 결과 데이터와 비교하여 기존 유효 열전도율 예측 모델보다 유사한 정확도를 나타내는 것을 확인하였다. 또한, 개선된 유효 열전도율 예측 모델을 적용하여 초고속 비행체 열방어구조의 과도 열전달 해석을 수행하였으며, 열전달 시험 결과와의 비교를 통해 예측 모델의 유효성을 확인하였다.

Porous insulation have been frequently used in a number of industries by minimizing thermal insulation space because of excellent performance of their thermal insulation. This paper devices an effective thermal conductivity prediction model. First of all, we perform literature survey on traditional effective thermal conductivity prediction models and compare each other model with heat transfer experimental results. Furthermore this research defines advanced effective thermal conductivity prediction models model based on heat transfer experimental results, the Zehner-Schlunder model. Finally we verify that the newly defined effective thermal conductivity prediction model has better performance prediction than other models. Finally, this research performs a transient heat transfer analysis of thermal protection system with a porous insulation using the finite element method and confirms validity of the effective thermal conductivity prediction model.

키워드

참고문헌

  1. Christopher, C. L., "High Speed Flight Vehicle Structures: An Overview," Journal of Aircraft, Vol. 41, No. 5, 2004, pp. 978-985. https://doi.org/10.2514/1.3880
  2. Thornton, E. A., Thermal Structures for Aerospace Applications, AIAA Educational Series.
  3. Castellino, M., Rovere M., Shahzad, M. I. , Tagliaferro, M. I., "Conductivity in carbon nanotube polymer composites," Thermochimica Acta, Vol. 635, pp. 8-16.
  4. Zhang, C., Du, Y., Liu, Y., Sundman, B., "Thermal conductivity of Al-Cu-Mg-Si alloys : Experimental measurement and CALPHAD modeling," Thermochimica Acta Journal, Vol. 87, pp. 237-242.
  5. Maxwell, J. C., A Treatise on Electricity and Magnetism, Clarendon Press, Oxford, 1873, pp. 365.
  6. Kunii, D., Smith, J. M., "Heat transfer characteristics of porous rocks," American Institute of Chemical Engineers Journal, Vol. 6, 1960, pp. 71-78. https://doi.org/10.1002/aic.690060115
  7. Kandula, M., "On the effective thermal conductivity of porous packed beds with uniform spherical particles," Journal of Porous Media, Vol. 14, 2011, pp. 919-926. https://doi.org/10.1615/JPorMedia.v14.i10.70
  8. Hsu, C. T., Cheng, P., Wong, K. W. "Modified Zehner-Schlunder models for stagnant thermal conductivity of porous media," International Journal of Heat and Mass Transfer, Vol. 37, pp. 2751-2759.
  9. MacDevette, M. M., Ribera, H. and Myers, T. G., "A simple yet effective model for thermal conductivity of nanofluids," Centre De Recerca Matematica, Preprint, No. 1149, 2013.
  10. Wong, C. P., Bollampally, R. S., "Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging," Journal of Applied. Polymer Science, Vol. 74, 1999, pp. 3396-3403. https://doi.org/10.1002/(SICI)1097-4628(19991227)74:14<3396::AID-APP13>3.0.CO;2-3
  11. Kanuparthi, S., Subbarayan, G., Siegmund, T., Sammakia, B., "An efficient network model for determining the effective thermal conductivity of particulate thermal interface materials," IEEE Transactions on Components and Packing Technologies, Vol. 31, No. 3, pp. 611-621.
  12. Woodside, W., Messmer, J. H., "Thermal conductivity of porous media I. Unconsolidated sand," Journal of Applied Physics, Vol. 12, No. 9, 1961. pp. 1688-1699.
  13. Kwak, K. and Kim, C., "Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol," Korea-Australia Rheology Journal, Vol. 17, No. 2, June, 2005, pp. 35-40.
  14. Yoo, D. H., Hong, T. E., Hong, J. A., Eastman, J. A. and Yang, H. S., "Thermal conductivity of Al2033/Water nanofluids," Journal of the Korean Physical Society, Vol. 51, 2007.
  15. Chandersaker, M., Suresh, S. and Bose, A. C., "Experimental investigations and theoretical determination of thermal conductivity and viscosity of $Al_20_33$/water nanofluid," Experimental Thermal and Fluid Science, 2010, pp. 210-216.
  16. Kleinstreuer, C. and Feng, Y., "Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review," Nanoscale Research Letters, Vol. 6, No. 1, 2011, pp. 229-242. https://doi.org/10.1186/1556-276X-6-229
  17. Draper, N. R. and Smith, H., Applied Regression Analysis, 3rd Ed., John Wiley.