참고문헌
- K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," arXiv preprint arXiv:1512.03385, 2015.
- Mollahosseini, Ali, David Chan, and Mohammad H. Mahoor, "Going deeper in facial expression recognition using deep neural networks." Applications of Computer Vision (WACV), 2016 IEEE Winter Conference on. IEEE, 2016.
- Jung, Heechul, et al. "Joint fine-tuning in deep neural networks for facial expression recognition." Proceedings of the IEEE International Conference on Computer Vision, 2015.
- Lopes, Andre Teixeira, Edilson de Aguiar, and Thiago Oliveira-Santos, "A facial expression recognition system using convolutional networks," Graphics, Patterns and Images (SIBGRAPI), 2015 28th SIBGRAPI Conference on, IEEE, 2015.
- Hamester, Dennis, Pablo Barros, and Stefan Wermter. "Face expression recognition with a 2-channel convolutional neural network," Neural Networks (IJCNN), 2015 International Joint Conference on. IEEE, 2015.
- W. Bainbridge, P. Isola, and A. Oliva, "The intrinsic memorability of face photographs," Journal of Experimental Psychology: General, 142(4):1323-1334, 2013. https://doi.org/10.1037/a0033872
- S. Setty and et al, "Indian Movie Face Database: A Benchmark for FaceRecognition Under Wide Variation," In NCVPRIPG, 2013.
- P. Lucey, J. Cohn, T. Kanade, J. Saragih, Z. Ambadar and I. Matthews, "The extended cohn-kanade dataset (ck+): A complete dataset for action unit and emotion-specified expression," in Proceedings of the IEEE Workshop on CVPR for Human Communicative Behavior Analysis, 2010.
- Ma, Correll, and Wittenbrink, The Chicago Face Database: A Free Stimulus Set of Faces and Norming Data, Behavior Research Methods, 47, 1122-1135. https://doi.org/10.3758/s13428-014-0532-5
- ESRC 3D Face Database, http://pics.stir.ac.uk/ESRC/
- J. Van der Schalk, S. T. Hawk, A. H. Fischer, and B. J. Doosje, Moving faces, looking places: The Amsterdam Dynamic Facial Expressions Set (ADFES), Emotion, 11, 907-920. DOI: 10.1037/a0023853, 2011.
- D. Lundqvist, A. Flykt, and A.Ohman (1998), The Karolinska Directed Emotional Faces - KDEF, CD ROM from Department of Clinical Neuroscience, Psychology section, Karolinska Institutet, ISBN 91-630-7164-9.
- H. O'Reilly, D. Pigat, S. Fridenson, S. Berggren, S. Tal, O. Golan, S. B"olte, S. Baron-Cohen and D. Lundqvist, The EU-Emotion Stimulus Set: A Validation Study, Behavior Research Methods. DOI: 10.3758/s13428-015-0601-4, 2015.
- M. Olszanowski, G. Pochwatko, K. Kuklinski, M. Scibor-Rylski, P. Lewinski and RK. Ohme, Warsaw Set of Emotional Facial Expression Pictures: A validation study of facial display photographs, Front. Psychol, 5:1516. doi: 10.3389/fpsyg.2014.01516, 2015.
- A. Krizhevsky, I. Sutskever, and G. Hinton, "Imagenet classification with deep convolutional neural networks," Advances in neural information processing systems, 2012.
- Learn facial expressions from an image, https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognitionchallenge/data
- Viola and Jones, "Rapid object detection using a boosted cascade of simple features," Computer Vision and Pattern Recognition, 2001.
- M. D. Zeiler and R. Fergus, "Visualizing and understanding convolutional networks," In European Conference on Computer Vision , Springer International Publishing, pp. 818-833, September 2014.
- K. Simonyan, and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," In Proc. International Conference on Learning Representations, http://arxiv.org/abs/1409.1556 (2014).
- P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus and Y. LeCun, "OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks." In Proc. ICLR, 2014.
- P. Burkert, F. Trier, M. Z. Afzal, A. Dengel, and M. Liwicki. Dexpression: "Deep convolutional neural network for expression recognition," .CoRR, abs/1509.05371, 2015.