References
- Lee, S. H., Kim, Y. S., Chu, C. H., Na, I. C., Lee, J. H. and Park, K. P., "Effect of Fabrication Method of Cathode on OCV in Enzyme Fuel Cells," Korean Chem. Eng. Res., 54(2), 171-174(2016). https://doi.org/10.9713/kcer.2016.54.2.171
- Lee, S. H., Hwang, B. C., Lee, H. R., Kim, Y. S., Chu, C. H., Na, I. C. and Park, K. P., "Effect of Fabrication Method of Anode on Performance in Enzyme Fuel Cells," Korean Chem. Eng. Res., 53(6), 667-671(2015). https://doi.org/10.9713/kcer.2015.53.6.667
- Wilson, R., "Glucose Oxidase: An Ideal Enzyme," Biosens. Bioelectron., 7, 165-185(1992). https://doi.org/10.1016/0956-5663(92)87013-F
- Ivnitski, D., Artyushkova, K., Rincon, R. A., Atanassov, P., Luckarift, H. R. and Johnson, G. R. "Entrapment of Enzymes and Carbon Nanotubes in Biologically Synthesized Silica: Glucose Oxidase-Catalyzed Direct Electron Transfer," Small, 4(3), 357-364(2008). https://doi.org/10.1002/smll.200700725
- Barton, S. C., Gallaway, J. and Atanassov, P., "Enzymatic Biofuel Cells for Implantable and Microscale Devices," Chem. Rev. 104, 4867-4886(2004). https://doi.org/10.1021/cr020719k
- Van Nguyen, K. and Minteer, S. D., "Investigating DNA Hydrogels as a New Biomaterial for Enzyme Immobilization in Biobatteries," Chemical Communications, 51(66), 13071-13073(2015). https://doi.org/10.1039/C5CC04810A
- Osadebe, I., Conghaile, P. O., Kavanagh, P., and Leech, D., "Glucose Oxidation by Osmium Redox Polymer Mediated Enzyme Electrodes Operating at Low Potential and in Oxygen, for Application to Enzymatic Fuel Cells," Electrochimica Acta, 182, 320-326(2015). https://doi.org/10.1016/j.electacta.2015.09.088
- Hyun, K. H., Han, S. W., Koh, W. and Kwon, Y., "Fabrication of Biofuel Cell Containing Enzyme Catalyst Immobilized by Layer-by-layer Method," Journal of Power Sources, 286, 197-203(2015). https://doi.org/10.1016/j.jpowsour.2015.03.136
-
Chung, Y., Hyun, K. and Kwon, Y., "Fabrication of Biofuel Cell Improved by
$\pi$ -Conjugated Electron Pathway Effect Induced from a New Enzyme Catalyst Employing Terephthalaldehyde," Nanoscale, 8, 1161-1168(2016). https://doi.org/10.1039/C5NR06703K - Chung, Y., Ahn, Y., Christwardana, M., Kim, H. and Kwon, Y., "Development of a Glucose Oxidase-based Biocatalyst Adopting Both Physical Entrapment and Crosslinking and its Use in Biofuel Cells," Nanoscale, 8, 9201-9210(2016). https://doi.org/10.1039/C6NR00902F
- Mandler, D., Kaminski, A. and Willner, I., "Application of Polyethyleneimine- quinone Modified Electrodes for Voltammetric Measurements of pH," Electrochimica acta, 37(15), 2765-2767(1992). https://doi.org/10.1016/0013-4686(92)85204-X
- Wang, J., "Electrochemical Glucose Biosensors," Chem. Rev., 108, 814-825(2008). https://doi.org/10.1021/cr068123a
- Laviron, E., "General Expression of the Linear Potential Sweep Voltammogram in the Case of Diffusionless Electrochemical Systems," J. Electroanal. Chem., 101, 19-28(1979). https://doi.org/10.1016/S0022-0728(79)80075-3
- Kamin, R. A. and Wilson, G. S., "Rotating Ring-disk Enzyme Electrode for Biocatalysis Kinetic Studies and Characterization of the Immobilized Enzyme Layer," Anal. Chem., 52(8), 1198-1205(1980). https://doi.org/10.1021/ac50058a010
- Ayato, Y., Suganuma, T., Seta, H., Yamagiwa, K., Shiroishi, H., and Kuwano, J., "Synthesis and Application of Carbon Nanotubes to Glucose Biofuel Cell with Glucose Oxidase and p-Benzoquinone," Journal of The Electrochemical Society, 162(14), F1482-F1486(2015). https://doi.org/10.1149/2.0621514jes
Cited by
- Performance evaluation of glucose oxidation reaction using biocatalysts adopting different quinone derivatives and their utilization in enzymatic biofuel cells vol.36, pp.3, 2019, https://doi.org/10.1007/s11814-018-0218-2