DOI QR코드

DOI QR Code

Measurement of Phase Behavior for Dextran/DMSO/scCO2 System

Dextran/DMSO/초임계 CO2계의 상거동 측정

  • Received : 2016.11.14
  • Accepted : 2017.01.05
  • Published : 2017.04.01

Abstract

Micron-sized dextran particles, which now attract wide attention as a promising drug delivery systems, can be prepared via the supercritical anti-solvent (SAS) process. In SAS process, dextran particles are obtained as a result of recrystallization of dissolved dextran in dimethyl sulfoxide (DMSO) on addition of supercritical $CO_2$ as an anti-solvent. In this work, with an intention to provide information on the feasible operating conditions of the process, the phase behavior of Dexran/DMSO/$CO_2$ is observed by measuring the cloud point in favor of a variable volume cell. From the experimental study, it is concluded that a feasible operating condition of the SAS process for preparation of dextran particles would be 300.15 K~330.15 K and 90 bar~130 bar, respectively, and solute concentration ranges from 5mg/ml to 20 mg/ml.

최근 약물전달시스템으로 널리 주목받고 있는 dextran의 미립자는 초임계 반용매 공정을 통해 얻을 수 있다. 초임계 반용매(SAS) 공정에서는 DMSO (dimethyl sulfoxide)에 용해되어 있는 dextran이 반용매인 초임계 $CO_2$의 첨가에 의한 재결정으로 얻어진다. 본 연구에서는 이 공정의 적절한 운전조건을 제시하기 위하여 가변부피 셀을 이용하여 cloud point를 측정함으로써 Dexran/DMSO/$CO_2$의 상거동을 관찰하였다 실험결과로부터 dextran 미립자 제조를 위한 초임계 반용매 공정의 적절한 온도(300.15 K~330.15 K), 압력(90 bar~130 bar), 용질의 농도(5 mg/ml~20 mg/ml)의 범위를 결정하였다.

Keywords

References

  1. Seo, J. H., Choi, B. K. and Park, T. K., "R&D Trend and Information Analysis for Drug Delivery System using Nanoparticles," Prospectives of Industrial Chemistry, 8(3), 60-67(2005).
  2. Krukonis, V., "Supercritical Fluid Nucleation of Difficult to Comminute Solids," the AIChE Annual Meeting, San Francisco (1984).
  3. Tucker, S. C., "Solvent Density Inhomogeneities in Supercritical Fluids," Chem. Rev., 99(2), 391-418(1999). https://doi.org/10.1021/cr9700437
  4. Kajimoto, O., "Solvation in Supercritical Fluids: Its Effects on Energy Transfer and Chemical Reactions," Chem. Rev., 99(2), 355-389(1999). https://doi.org/10.1021/cr970031l
  5. Masoud, B. and Sima, R., "Production of Micro- and Nanocom- Posite Particles by Supercritical Carbon Dioxide," J. Supercritical Fluids, 40, 263-283(2007). https://doi.org/10.1016/j.supflu.2006.05.006
  6. Lee, Y. W., "Supercritical Fluid Technology (I)," News Inf. Chem. Eng., 19(3), 325-333(2001).
  7. Lee, Y. W., "Supercritical Fluid Technology (II)," News Inf. Chem. Eng., 19(4), 457-467(2001).
  8. Lee, J. C., Kim, C. R. and Byun, H. S., "Synthesis and Adsorption Properties of Carbamazepine Imprinted Polymer by Dispersion Polymerization in Supercritical Carbon Dioxide," Korean J. Chem. Eng., 31(12), 2266-2273(2014). https://doi.org/10.1007/s11814-014-0178-0
  9. Masoud, B. and Sima, R., "Production of Micro- and Nano-composite Particles by Supercritical Carbon Dioxide," J. of Supercritical Fluids, 40, 263-283(2007). https://doi.org/10.1016/j.supflu.2006.05.006
  10. Reverchon, E. and Adami, R., "Nanomaterials and Supercritical Fluids," The Journal of Supercritical Fluids, 37(1), 1-22(2006). https://doi.org/10.1016/j.supflu.2005.08.003
  11. Paulaitis, M. E., "Chemical Engineering at Supercritical Fluid Conditions," Ann Arbor Science(1983).
  12. Hyatt, J. M., Wong, R., Lahiere, J. and Johnston, K. P., "Modification of Supercritical Fluid Phase Behavior using Polar Cosolvents," Ind. Eng. Chem. Res., 26, 56-60(1987). https://doi.org/10.1021/ie00061a011
  13. Icoz, D. Z., Moraru, C. I. and Kokini, J. L., "Polymer-polymer Interactions in Dextran Systems Using Thermal Analysis," Carbohydrate Polymers, 62(2), 120-129(2005). https://doi.org/10.1016/j.carbpol.2005.07.012
  14. Han, C. N. and Kang, C. H., "Extraction of Genistein from Sophora flavescens with Supercritical Carbon Dioxide," Korean Chem. Eng. Res., 53(4), 445-449(2015). https://doi.org/10.9713/kcer.2015.53.4.445
  15. Kang, D. Y., Min, B. J., Rho, S. G., and Kang C. H., "Preparation of Dextran Microparticles by Using the SAS Process," Korean Chem. Eng. Res., 46(5), 958-964(2008).
  16. Jang, Y. S. and Byun, H. S., "Cloud-Point and Bubble-Point Measurement for the Poly(2-butoxyethyl acrylate) plus Cosolvent Mixture and 2-Butoxyethyl Acrylate in Supercritical Fluid Solvents," J. Chem. Eng. Data., 59(5), 1931-1399(2014).
  17. Jang, Y. S., Choi, Y. S. and Byun, H. S., "Phase Behavior for the Poly(2-methoxyethyl acrylate)+supercritical Solvent+Cosolvent Mixture and CO2+2-methoxyethyl Acrylate System at High Pressure," Korean J. Chem. Eng., 32(5), 958-966(2015). https://doi.org/10.1007/s11814-014-0316-8
  18. Byun, H. S., "Phase Equilibria Measurement of Binary Mixture for the Propoxylated Neopentyl Glycol Diacrylate in Supercritical Carbon Dioxide," Korean Chem. Eng. Res., 54(2), 206-212 (2016). https://doi.org/10.9713/kcer.2016.54.2.206