DOI QR코드

DOI QR Code

Electrochemical Properties of Commercial NCA Cathode Materials for High Capacity of Lithium Ion Battery

상용 고용량 리튬이온이차전지용 NCA 양극활물질의 전기화학적 특성

  • Jin, En Mei (Department of Chemical Engineering, Chungbuk National University) ;
  • Lee, Ga-Eul (Department of Chemical Engineering, Chungbuk National University) ;
  • Na, Byuong-Ki (Department of Chemical Engineering, Chungbuk National University) ;
  • Jeong, Sang Mun (Department of Chemical Engineering, Chungbuk National University)
  • 김은미 (충북대학교 화학공학과) ;
  • 이가을 (충북대학교 화학공학과) ;
  • 나병기 (충북대학교 화학공학과) ;
  • 정상문 (충북대학교 화학공학과)
  • Received : 2016.12.13
  • Accepted : 2017.01.13
  • Published : 2017.04.01

Abstract

In order to investigate the electrochemical properties and the particle size effect of $LiNi_{1-x-y}Co_xAl_yO_2$ (x=0.15, y=0.045 or 0.05, NCA) for lithium ion batteries (LIBs), two commercial NCA cathode materials (NCA#1, NCA#2) were used as cathode materials for LIB. The average particle size of the NCA#1 which consisted of uniform spherical particles was found to be approximately $5m{\mu}$. NCA#2 consisted of particles with bimodal size distribution of approximately $5m{\mu}$ and $11m{\mu}$. From the results of charge-discharge performance test, a high initial discharge capacity of 197.0 mAh/g was obtained with NCA#2, which is a higher value than that with NCA#1. The cycle retentions of NCA#1 and NCA#2 up to 30 cycles were 92% and 94%, respectively.

$LiNi_{1-x-y}Co_xAl_yO_2$(x=0.15, y=0.045 혹은 0.05, NCA) 양극소재의 전기화학적 특성 및 양극소재의 입자 크기 분포에 대한 리튬이온이차전지의 수명특성에 대한 영향을 살피기 위해 두 종의 상업용 NCA (NCA#1, NCA#2) 양극소재를 리튬이온이차전지의양극으로사용하였다. NCA#1은약 $5m{\mu}$의 균일한구형의입자로구성되어있고 NCA#2는약 $5m{\mu}$$11m{\mu}$ 정도의 입자들이 혼합되어 있는 분말이다. 충방전 측정 결과 NCA#2는 초기 방전용량은 197.0 mAh/g으로 NCA#1에 비해 높게 나타났다. NCA#1과 NCA#2의 용량 유지율(30 사이클 기준)은 각각 92%와 94%로 나타났다.

Keywords

References

  1. Kang, K. Y., Choi, M. G., Lee, Y. G. and Kim, K. M., "Phase Change of Nanorod-Clustered $MnO_2$ by Hydrothermal Reaction Conditions and the Lithium-ion Battery Cathode Properties of $LiMn_2O_4$ Prepared from the $MnO_2$," Korean Chem. Eng. Res., 49(5), 541-547 (2011). https://doi.org/10.9713/kcer.2011.49.5.541
  2. Lee, H. Y. and Lee, J. D., "Electrochemical Performance on the $H_3BO_3$ Treated Soft Carbon modified from PFO as Anode Material," Korean Chem. Eng. Res., 54(6), 746-752(2016). https://doi.org/10.9713/kcer.2016.54.6.746
  3. Wu, B., Wang, J., Li, J., Lin, W., Hu, H., Wang, F., Zhao, S., Gan, C. and Zhao, J., "Morphology Controllable Synthesis and Electrochemical Performance of $LiCoO_2$ for Lithium-ion Batteries," Electrochim. Acta, 209, 315-322(2016). https://doi.org/10.1016/j.electacta.2016.05.085
  4. Vu, D. L. and Lee, J. W., "Properties of $LiNi_{0.8}Co_{0.}1Mn_{0.1}O_2$ as a High Energy Cathode Material for Lithium-ion Batteries," Korean J. Chem. Eng., 33(2), 514-526(2016). https://doi.org/10.1007/s11814-015-0154-3
  5. Hua, W., Zhang, J., Zheng, Z., Liu, W., Peng, X., Guo, X. D., Zhong, B., Wang, Y. J. and Wang, X., "Na-doped Ni-rich $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ Cathode Material with Both High Rate Capability and High Tap Density for Lithium Ion Batteries," Dalton Trans., 43, 14824-14832(2014). https://doi.org/10.1039/C4DT01611D
  6. Nitta, N., Wu, F., Lee, J. T. and Yushin, G., "Li-ion Battery Materials: Present and Future," Materials Today, 18, 252-264(2015). https://doi.org/10.1016/j.mattod.2014.10.040
  7. Liu, J., Wang, S., Ding, Z., Zhou, R., Xia, Q. J., Chen, L., Wei, W. and Wang, P., "The Effect of Boron Doping on Structure and Electrochemical Performance of Lithium-Rich Layered Oxide Materials," ACS Appl. Mater. Interfaces, 8, 18008-18017(2016). https://doi.org/10.1021/acsami.6b03056
  8. Choo, S., Kim, H. Y., Yoon, D. Y., Choi, W., Oh, S. H., Ju, J. B., Ko, J. M., Jang, H. and Cho, W. I., "Electrochemical Properties of Co-less Layered Transition Metal Oxide as High Energy Cathode Material for Li-ion Batteries," J. Korean Electrochem. Soc., 31, 905-910(2014).
  9. Conry, T. E., Mehta, A., Cabana, J. and Doeff, M. M., "Structural Underpinnings of the Enhanced Cycling Stability upon Al-Substitution in $LiNi_{0.45}Mn_{0.45}Co_{0.1-y}Al_yO_2$ Positive Electrode Materials for Li-ion Batteries," Chem. Mater., 24, 3307-3317(2012). https://doi.org/10.1021/cm3011937
  10. Lim, S. N., Ahn, W., Yeon, S. H. and Park, S. B., "Enhanced Elevated-temperature Performance of $Li(Ni_{0.8}Co_{0.15}Al_{0.05})O_2$ Electrodes Coated with $Li_2O-2B_2O_3$ Glass," Electrochim. Acta, 136, 1-9(2014). https://doi.org/10.1016/j.electacta.2014.05.056
  11. Lee, D. J., Scrosati, B. and Sun, Y. K., "$Ni_3(PO_4)_2$-coated $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ Lithium Battery Electrode with Improved Cycling Performance at $55^{\circ}C$," J. Power Sources, 196, 7742-7746(2011). https://doi.org/10.1016/j.jpowsour.2011.04.007
  12. Lee, S. H., Yoon, C. S., Amine, K. and Sun, Y. K., "Improvement of Long-term Cycling Performance of $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ by AlF3 Coating," J. Power Sources, 234, 201-207(2013). https://doi.org/10.1016/j.jpowsour.2013.01.045
  13. Liu, W., Hu, G., Du, K., Peng, Z. and Cao, Y., "Surface Coating of $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ with $LiCoO_2$ by a Molten Salt Method," Surface & Coatings Technology, 216, 267-272(2013). https://doi.org/10.1016/j.surfcoat.2012.11.057
  14. Kang, S. H., Kim, J., Stoll, M. E., Abraham, D., Sun, Y. K. and Amine, K., "Layered $Li(Ni_{0.5-x}Mn_{0.5-x}M_{2x}{^{\prime}})O_2$ (M'=Co, Al, Ti; x=0, 0.025) Cathode Materials for Li-ion Rechargeable Batteries," J. Power Sources, 112, 41-48(2002). https://doi.org/10.1016/S0378-7753(02)00360-9
  15. Santhanam, R. and Rambabu, B., "High Rate Cycling Performance of $Li_{1.05}Ni_{1/3}Co_{1/3}Mn_{1/3}O_2$ Materials Prepared by Sol-gel and Co-precipitation Methods for Lithium-ion Batteries," J. Power Sources, 195, 4313-4317(2010). https://doi.org/10.1016/j.jpowsour.2010.01.016
  16. Chang, Z. R., Chen, Z. J., Wu, F., Tang, H. W. and Zhu, Z. H., "Synthesis of $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ Cathode Material by Eutectic Molten Salt $LiOH-LiNO_3$," Acta Phys. Chim. Sin., 24, 513-519 (2008).
  17. Chang, Z., Chen, Z., Wu, F., Yuan, X. Z. and Wang, H., "The Synthesis of $Li(Ni_{1/3}Co_{1/3}Mn_{1/3})O_2$ Using Eutectic Mixed Lithium Salt $LiNO_3-LiOH$," Electrochim. Acta, 54, 6529-6535(2009). https://doi.org/10.1016/j.electacta.2009.06.013
  18. Dahn, J. R., Sacken, U. V., Michal, C. A., "Structure and Electrochemistry of $Li_{1{\pm}y}NiO_2$ and a New $Li_2NiO_2$ Phase with the $Ni(OH)_2$ Structure," Solid State Ionics, 44, 87-97(1990). https://doi.org/10.1016/0167-2738(90)90049-W
  19. Reimers, J. N., Rossen, E., Jones, C. D. and Dahn, J. R., "Structure and Electrochemistry of $Li_xFeyNi_{1-y}O_2$," Solid State Ionics, 61, 335-344(1993). https://doi.org/10.1016/0167-2738(93)90401-N
  20. Wu, K., Wang, F., Gao, L., Li, M. R., Xiao, L., Zhao, L., Hu, S., Wang, X., Xu, Z. and Wu, Q., "Effect of Precursor and Synthesis Temperature on the Structural and Electrochemical Properties of $Li(Ni_{0.5}Co_{0.2}Mn_{0.3})O_2$," Electrochim. Acta, 75, 393-398(2012). https://doi.org/10.1016/j.electacta.2012.05.035
  21. Li, W., Reimers, J. N. and Dahn, J. R., "In situ x-ray Diffraction and Electrochemical Studies of $Li_{1-x}NiO_2$," Solid State Ionics, 67, 123-130(1993). https://doi.org/10.1016/0167-2738(93)90317-V
  22. Makimura, Y., Sasaki, T., Nanaka, T., Nishimura, Y. F., Uyama, T., Okuda, C., Itou, Y. and Takeuchi, Y., "Factors Affecting Cycling Life of $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ for Lithium-ion Batteries," J. Mater. Chem. A, 4, 8350-8358(2016). https://doi.org/10.1039/C6TA01251E

Cited by

  1. Effect of Metal (Mn, Ti) Doping on NCA Cathode Materials for Lithium Ion Batteries vol.2018, pp.1687-4129, 2018, https://doi.org/10.1155/2018/8082502