DOI QR코드

DOI QR Code

Mathematical modeling of concrete pipes reinforced with CNTs conveying fluid for vibration and stability analyses

  • Nouri, Alireza Zamani (Department of Civil Engineering, college of Engineering, Saveh Branch, Islamic Azad University)
  • Received : 2016.11.29
  • Accepted : 2017.01.10
  • Published : 2017.03.25

Abstract

In this study, vibration and stability of concrete pipes reinforced with carbon nanotubes (CNTs) conveying fluid are presented. Due to the existence of CNTs, the structure is subjected to magnetic field. The radial fore induced with fluid is calculated using Navier-Stokes equations. Characteristics of the equivalent composite are determined using Mori-Tanaka model. The concrete pipe is simulated with classical cylindrical shell model. Employing energy method and Hamilton's principal, the motion equations are derived. Frequency and critical fluid velocity of structure are obtained analytically based on Navier method for simply supported boundary conditions at both ends of the pipe. The effects of fluid, volume percent of CNTs, magnetic field and geometrical parameters are shown on the frequency and critical fluid velocity of system. Results show that with increasing volume percent of CNTs, the frequency and critical fluid velocity of concrete pipe are increased.

Keywords

References

  1. Agrawal, S., Gupta, V.K. and Kankar, P.K. (2016), "Static analysis of magnetic field affected double single walled carbon nanotube system", Proc. Technol., 23, 84-90. https://doi.org/10.1016/j.protcy.2016.03.002
  2. Amabili, M. (1996), "Free vibration of partially filled horizontal cylindrical shells", J. Sound Vibr., 191(5), 757-780. https://doi.org/10.1006/jsvi.1996.0154
  3. Amabili, M. (1999), "Vibrations of circular tubes and shells filled and partially immersed in dense fluids", J. Sound Vibr., 221(4), 567-585. https://doi.org/10.1006/jsvi.1998.2050
  4. Askari, E., Daneshmand, F. and Amabili, M. (2011), "Coupled vibrations of a partially fluid-filled cylindrical container with an internal body including the effect of free surface waves", J. Fluid. Struct., 27(7), 1049-1067. https://doi.org/10.1016/j.jfluidstructs.2011.04.010
  5. Baohui, L., Hangshan, G., Yongshou, L. and Zhufeng, Y. (2012), "Free vibration analysis of micropipe conveying fluid by wave method", Res. Phys., 2, 104-109.
  6. Bent, A.A., Hagood, N.W. and Rodgers, J.P. (1995), "Anisotropic actuation with piezoelectric fiber composites", J. Intel. Mater. Syst. Struct., 6(3), 338-349. https://doi.org/10.1177/1045389X9500600305
  7. Chen, W.Q. and Ding, H.J. (1999), "Natural frequencies of fluid-filled transversely isotropic cylindrical shells", J. Mech. Sci., 41(6), 677-684. https://doi.org/10.1016/S0020-7403(98)00088-5
  8. Chen, W.Q., Bian, Z.G. and Ding, H.J. (2004), "Three-dimensional vibration analysis of fluid-filled orthotropic FGM cylindrical shells", J. Sol. Struct., 46(1), 159-171.
  9. Chung, H. (1981), "Free vibration analysis of circular cylindrical shells", J. Sound Vibr., 74(3), 331-359. https://doi.org/10.1016/0022-460X(81)90303-5
  10. Daneshmand, F. and Ghavanloo, E. (2010), "Coupled free vibration analysis of a fluid-filled rectangular container with a sagged bottom membrane", J. Fluid. Struct., 26(2), 236-252. https://doi.org/10.1016/j.jfluidstructs.2009.11.001
  11. Ghorbanpour, A.A., Kolahchi, R., Mosalaei, B.A.A. and Loghman, A. (2012), "Electro-thermo-mechanical behaviors of FGPM spheres using analytical method and ANSYS software", Appl. Math. Model., 36(1), 139-157. https://doi.org/10.1016/j.apm.2011.05.031
  12. Gibson, K. and Ronald, F. (1994), Principles of Composite Material Mechanics, McGraw Hill, New York.
  13. Goncalves, P.B. and Batista, R.C. (1987), "Frequency response of cylindrical shells partially submerged or filled with liquid", J. Sound Vibr., 113(1), 59-70. https://doi.org/10.1016/S0022-460X(87)81340-8
  14. Heidarzadeh, A., Kolahchi, R. and Rabani, B.M. (2016), "Concrete pipes reinforced with AL2O3 nanoparticles considering agglomeration: Magneto-thermo-mechanical stress analysis", J. Civil Eng., 1-8.
  15. Jain, R.K. (1974), "Vibration of fluid-filled orthotropic cylindrical shells", J. Sound Vibr., 37(3), 379-388. https://doi.org/10.1016/S0022-460X(74)80253-1
  16. Junger, M.C. and Mass, C. (1952), "Vibration of elastic shells in a fluid medium and the associated radiation of sound", J. Appl. Mech., 74, 439-445.
  17. Kadoli, R. and Ganesan, N. (2003), "Free vibration and buckling analysis of composite cylindrical shells conveying hot fluid", Compos. Struct., 60(1), 19-32. https://doi.org/10.1016/S0263-8223(02)00313-6
  18. Matsuna, H. (2007), "Vibration and buckling of cross-ply laminated composite circular cylindrical shells according to a global higher-order theory", J. Mech. Sci., 49(9), 1060-1075. https://doi.org/10.1016/j.ijmecsci.2006.11.008
  19. Messina, A. and Soldatos, K.P. (1999), "Vibration of completely free composite plates and cylindrical shell panels by a higher-order theory", J. Mech. Sci., 41(8), 891-918. https://doi.org/10.1016/S0020-7403(98)00069-1
  20. Nguyen-Van, H., Mai-Duy, N., Karunasena, W. and Tran-Cong, T. (2011), "Buckling and vibration analysis of laminated composite plate/shell structures via a smoothed quadrilateral flat shell element with in-plane rotations", Compos. Struct., 89(7), 612-625. https://doi.org/10.1016/j.compstruc.2011.01.005
  21. Pellicano, F. and Amabili, M. (2003), "Stability and vibration of empty and fluid-filled circular cylindrical shells under static and periodic axial loads", J. Sol. Struct., 40(13), 3229-3251. https://doi.org/10.1016/S0020-7683(03)00120-3
  22. Rahmani, O., Khalili, S.M.R. and Malekzadeh, K. (2010), "Free vibration response of composite sandwich cylindrical shell with flexible core", Compos. Struct., 92(5), 1269-1281. https://doi.org/10.1016/j.compstruct.2009.10.021
  23. Ray, M.C. and Reddy, J.N. (2005), "Active control of laminated cylindrical shells using piezoelectric fiber reinforced composites", Compos. Sci. Technol., 65(7), 1226-1236. https://doi.org/10.1016/j.compscitech.2004.12.027
  24. Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells-Theory and Analysis, CRC Press, New York, U.S.A.
  25. Safari, B.B., Kolahchi, R. and Rabani, B.M. (2016), "Buckling of concrete columns retrofitted with nano-fiber reinforced polymer (NFRP)", Comput. Concrete, 18(5), 1053-1063. https://doi.org/10.12989/cac.2016.18.5.1053
  26. Tan, H., Huang, Y., Liu, C. and Geubelle, P.H. (2005), "The mori-tanaka method for composite materials with nonlinear interface debonding", J. Plast., 21(10), 1890-1918. https://doi.org/10.1016/j.ijplas.2004.10.001
  27. Tan, P. and Tong, L. (2001), "Micro-electromechanics models for piezoelectric-fiber-reinforced composite materials", Compos. Sci. Technol., 61(5), 759-769. https://doi.org/10.1016/S0266-3538(01)00014-8
  28. Tj, H.G., Mikami, T., Kanie, S. and Sato, M. (2005), "Free vibrations of fluid-filled cylindrical shells on elastic foundations", Thin-Wall. Struct., 43(11), 1746-1762. https://doi.org/10.1016/j.tws.2005.07.005
  29. Zamanian, M., Kolahchi, R. and Rabani, B.M. (2016), "Agglomeration effects on the buckling behaviour of embedded concrete columns reinforced with SiO2 nano-particles", Wind Struct., 24(1), 43-57. https://doi.org/10.12989/WAS.2017.24.1.043
  30. Zhang, C., Zhou, W., Ma, G., Hu, C. and Li, S. (2015), "A meso-scale approach to modeling thermal cracking of concrete induced by water-cooling pipes", Comput. Concrete, 15(4), 485-501. https://doi.org/10.12989/cac.2015.15.4.485
  31. Zhu, Z., Qiang, S. and Chen, W. (2013), "A new method solving the temperature field of concrete around cooling pipes", Comput. Concrete, 11(5), 441-462. https://doi.org/10.12989/cac.2013.11.5.441

Cited by

  1. Vibration analysis of silica nanoparticle-reinforced concrete pipes filled with compressible fluid surrounded by soil foundation 2018, https://doi.org/10.1002/suco.201700185
  2. Seismic response of soil foundation surrounded Fe 2 O 3 nanoparticles-reinforced concrete pipes conveying fluid vol.106, 2018, https://doi.org/10.1016/j.soildyn.2017.12.009
  3. Numerical study for critical fluid velocity in temperature-dependent pipes conveying fluid mixed with nanoparticles using higher order shear deformation theory pp.1754-212X, 2018, https://doi.org/10.1080/17445302.2018.1512357
  4. Effects of the passive electromagnetic damper on the behavior of a fluid-conveying pipeline pp.2041-2983, 2019, https://doi.org/10.1177/0954406218784627
  5. Seismic response of SiO2 nanoparticles-reinforced concrete pipes based on DQ and newmark methods vol.19, pp.6, 2017, https://doi.org/10.12989/cac.2017.19.6.745
  6. Vibration reduction of a pipe conveying fluid using the semi-active electromagnetic damper vol.6, pp.2, 2017, https://doi.org/10.12989/csm.2017.6.2.175
  7. Seismic response of underwater fluid-conveying concrete pipes reinforced with SiO2 nanoparticles using DQ and Newmark methods vol.21, pp.6, 2017, https://doi.org/10.12989/cac.2018.21.6.717
  8. Classical shell theory for instability analysis of concrete pipes conveying nanofluid vol.22, pp.2, 2017, https://doi.org/10.12989/cac.2018.22.2.161
  9. Dynamic analysis of immersion concrete pipes in water subjected to earthquake load using mathematical methods vol.15, pp.4, 2017, https://doi.org/10.12989/eas.2018.15.4.361
  10. Dynamic instability response in nanocomposite pipes conveying pulsating ferrofluid flow considering structural damping effects vol.68, pp.3, 2018, https://doi.org/10.12989/sem.2018.68.3.359
  11. Dynamic stress, strain and deflection analysis of pipes conveying nanofluid buried in the soil medium considering damping effects subjected to earthquake load vol.24, pp.5, 2017, https://doi.org/10.12989/cac.2019.24.5.445
  12. The effect of nanoparticle in reduction of critical fluid velocity in pipes conveying fluid vol.9, pp.1, 2017, https://doi.org/10.12989/acc.2020.9.1.103
  13. Dynamic stress response in the nanocomposite concrete pipes with internal fluid under the ground motion load vol.9, pp.3, 2020, https://doi.org/10.12989/acc.2020.9.3.327
  14. Seismic analysis in pad concrete foundation reinforced by nanoparticles covered by smart layer utilizing plate higher order theory vol.37, pp.1, 2017, https://doi.org/10.12989/scs.2020.37.1.099