References
- Agrawal, S., Gupta, V.K. and Kankar, P.K. (2016), "Static analysis of magnetic field affected double single walled carbon nanotube system", Proc. Technol., 23, 84-90. https://doi.org/10.1016/j.protcy.2016.03.002
- Amabili, M. (1996), "Free vibration of partially filled horizontal cylindrical shells", J. Sound Vibr., 191(5), 757-780. https://doi.org/10.1006/jsvi.1996.0154
- Amabili, M. (1999), "Vibrations of circular tubes and shells filled and partially immersed in dense fluids", J. Sound Vibr., 221(4), 567-585. https://doi.org/10.1006/jsvi.1998.2050
- Askari, E., Daneshmand, F. and Amabili, M. (2011), "Coupled vibrations of a partially fluid-filled cylindrical container with an internal body including the effect of free surface waves", J. Fluid. Struct., 27(7), 1049-1067. https://doi.org/10.1016/j.jfluidstructs.2011.04.010
- Baohui, L., Hangshan, G., Yongshou, L. and Zhufeng, Y. (2012), "Free vibration analysis of micropipe conveying fluid by wave method", Res. Phys., 2, 104-109.
- Bent, A.A., Hagood, N.W. and Rodgers, J.P. (1995), "Anisotropic actuation with piezoelectric fiber composites", J. Intel. Mater. Syst. Struct., 6(3), 338-349. https://doi.org/10.1177/1045389X9500600305
- Chen, W.Q. and Ding, H.J. (1999), "Natural frequencies of fluid-filled transversely isotropic cylindrical shells", J. Mech. Sci., 41(6), 677-684. https://doi.org/10.1016/S0020-7403(98)00088-5
- Chen, W.Q., Bian, Z.G. and Ding, H.J. (2004), "Three-dimensional vibration analysis of fluid-filled orthotropic FGM cylindrical shells", J. Sol. Struct., 46(1), 159-171.
- Chung, H. (1981), "Free vibration analysis of circular cylindrical shells", J. Sound Vibr., 74(3), 331-359. https://doi.org/10.1016/0022-460X(81)90303-5
- Daneshmand, F. and Ghavanloo, E. (2010), "Coupled free vibration analysis of a fluid-filled rectangular container with a sagged bottom membrane", J. Fluid. Struct., 26(2), 236-252. https://doi.org/10.1016/j.jfluidstructs.2009.11.001
- Ghorbanpour, A.A., Kolahchi, R., Mosalaei, B.A.A. and Loghman, A. (2012), "Electro-thermo-mechanical behaviors of FGPM spheres using analytical method and ANSYS software", Appl. Math. Model., 36(1), 139-157. https://doi.org/10.1016/j.apm.2011.05.031
- Gibson, K. and Ronald, F. (1994), Principles of Composite Material Mechanics, McGraw Hill, New York.
- Goncalves, P.B. and Batista, R.C. (1987), "Frequency response of cylindrical shells partially submerged or filled with liquid", J. Sound Vibr., 113(1), 59-70. https://doi.org/10.1016/S0022-460X(87)81340-8
- Heidarzadeh, A., Kolahchi, R. and Rabani, B.M. (2016), "Concrete pipes reinforced with AL2O3 nanoparticles considering agglomeration: Magneto-thermo-mechanical stress analysis", J. Civil Eng., 1-8.
- Jain, R.K. (1974), "Vibration of fluid-filled orthotropic cylindrical shells", J. Sound Vibr., 37(3), 379-388. https://doi.org/10.1016/S0022-460X(74)80253-1
- Junger, M.C. and Mass, C. (1952), "Vibration of elastic shells in a fluid medium and the associated radiation of sound", J. Appl. Mech., 74, 439-445.
- Kadoli, R. and Ganesan, N. (2003), "Free vibration and buckling analysis of composite cylindrical shells conveying hot fluid", Compos. Struct., 60(1), 19-32. https://doi.org/10.1016/S0263-8223(02)00313-6
- Matsuna, H. (2007), "Vibration and buckling of cross-ply laminated composite circular cylindrical shells according to a global higher-order theory", J. Mech. Sci., 49(9), 1060-1075. https://doi.org/10.1016/j.ijmecsci.2006.11.008
- Messina, A. and Soldatos, K.P. (1999), "Vibration of completely free composite plates and cylindrical shell panels by a higher-order theory", J. Mech. Sci., 41(8), 891-918. https://doi.org/10.1016/S0020-7403(98)00069-1
- Nguyen-Van, H., Mai-Duy, N., Karunasena, W. and Tran-Cong, T. (2011), "Buckling and vibration analysis of laminated composite plate/shell structures via a smoothed quadrilateral flat shell element with in-plane rotations", Compos. Struct., 89(7), 612-625. https://doi.org/10.1016/j.compstruc.2011.01.005
- Pellicano, F. and Amabili, M. (2003), "Stability and vibration of empty and fluid-filled circular cylindrical shells under static and periodic axial loads", J. Sol. Struct., 40(13), 3229-3251. https://doi.org/10.1016/S0020-7683(03)00120-3
- Rahmani, O., Khalili, S.M.R. and Malekzadeh, K. (2010), "Free vibration response of composite sandwich cylindrical shell with flexible core", Compos. Struct., 92(5), 1269-1281. https://doi.org/10.1016/j.compstruct.2009.10.021
- Ray, M.C. and Reddy, J.N. (2005), "Active control of laminated cylindrical shells using piezoelectric fiber reinforced composites", Compos. Sci. Technol., 65(7), 1226-1236. https://doi.org/10.1016/j.compscitech.2004.12.027
- Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells-Theory and Analysis, CRC Press, New York, U.S.A.
- Safari, B.B., Kolahchi, R. and Rabani, B.M. (2016), "Buckling of concrete columns retrofitted with nano-fiber reinforced polymer (NFRP)", Comput. Concrete, 18(5), 1053-1063. https://doi.org/10.12989/cac.2016.18.5.1053
- Tan, H., Huang, Y., Liu, C. and Geubelle, P.H. (2005), "The mori-tanaka method for composite materials with nonlinear interface debonding", J. Plast., 21(10), 1890-1918. https://doi.org/10.1016/j.ijplas.2004.10.001
- Tan, P. and Tong, L. (2001), "Micro-electromechanics models for piezoelectric-fiber-reinforced composite materials", Compos. Sci. Technol., 61(5), 759-769. https://doi.org/10.1016/S0266-3538(01)00014-8
- Tj, H.G., Mikami, T., Kanie, S. and Sato, M. (2005), "Free vibrations of fluid-filled cylindrical shells on elastic foundations", Thin-Wall. Struct., 43(11), 1746-1762. https://doi.org/10.1016/j.tws.2005.07.005
- Zamanian, M., Kolahchi, R. and Rabani, B.M. (2016), "Agglomeration effects on the buckling behaviour of embedded concrete columns reinforced with SiO2 nano-particles", Wind Struct., 24(1), 43-57. https://doi.org/10.12989/WAS.2017.24.1.043
- Zhang, C., Zhou, W., Ma, G., Hu, C. and Li, S. (2015), "A meso-scale approach to modeling thermal cracking of concrete induced by water-cooling pipes", Comput. Concrete, 15(4), 485-501. https://doi.org/10.12989/cac.2015.15.4.485
- Zhu, Z., Qiang, S. and Chen, W. (2013), "A new method solving the temperature field of concrete around cooling pipes", Comput. Concrete, 11(5), 441-462. https://doi.org/10.12989/cac.2013.11.5.441
Cited by
- Vibration analysis of silica nanoparticle-reinforced concrete pipes filled with compressible fluid surrounded by soil foundation 2018, https://doi.org/10.1002/suco.201700185
- Seismic response of soil foundation surrounded Fe 2 O 3 nanoparticles-reinforced concrete pipes conveying fluid vol.106, 2018, https://doi.org/10.1016/j.soildyn.2017.12.009
- Numerical study for critical fluid velocity in temperature-dependent pipes conveying fluid mixed with nanoparticles using higher order shear deformation theory pp.1754-212X, 2018, https://doi.org/10.1080/17445302.2018.1512357
- Effects of the passive electromagnetic damper on the behavior of a fluid-conveying pipeline pp.2041-2983, 2019, https://doi.org/10.1177/0954406218784627
- Seismic response of SiO2 nanoparticles-reinforced concrete pipes based on DQ and newmark methods vol.19, pp.6, 2017, https://doi.org/10.12989/cac.2017.19.6.745
- Vibration reduction of a pipe conveying fluid using the semi-active electromagnetic damper vol.6, pp.2, 2017, https://doi.org/10.12989/csm.2017.6.2.175
- Seismic response of underwater fluid-conveying concrete pipes reinforced with SiO2 nanoparticles using DQ and Newmark methods vol.21, pp.6, 2017, https://doi.org/10.12989/cac.2018.21.6.717
- Classical shell theory for instability analysis of concrete pipes conveying nanofluid vol.22, pp.2, 2017, https://doi.org/10.12989/cac.2018.22.2.161
- Dynamic analysis of immersion concrete pipes in water subjected to earthquake load using mathematical methods vol.15, pp.4, 2017, https://doi.org/10.12989/eas.2018.15.4.361
- Dynamic instability response in nanocomposite pipes conveying pulsating ferrofluid flow considering structural damping effects vol.68, pp.3, 2018, https://doi.org/10.12989/sem.2018.68.3.359
- Dynamic stress, strain and deflection analysis of pipes conveying nanofluid buried in the soil medium considering damping effects subjected to earthquake load vol.24, pp.5, 2017, https://doi.org/10.12989/cac.2019.24.5.445
- The effect of nanoparticle in reduction of critical fluid velocity in pipes conveying fluid vol.9, pp.1, 2017, https://doi.org/10.12989/acc.2020.9.1.103
- Dynamic stress response in the nanocomposite concrete pipes with internal fluid under the ground motion load vol.9, pp.3, 2020, https://doi.org/10.12989/acc.2020.9.3.327
- Seismic analysis in pad concrete foundation reinforced by nanoparticles covered by smart layer utilizing plate higher order theory vol.37, pp.1, 2017, https://doi.org/10.12989/scs.2020.37.1.099