과제정보
연구 과제 주관 기관 : Duzce University
참고문헌
- Al-Akhras, N.M. and Smadi, M.M. (2004), "Properties of tire rubber ash mortar", Cement Concrete Compos., 26(7), 821-826. https://doi.org/10.1016/j.cemconcomp.2004.01.004
- Atis, C.D. and Bilim, C. (2007), "Wet and dry cured compressive strength of concrete containing ground granulated blast-furnace slag", Build. Environ., 42(8), 3060-3065. https://doi.org/10.1016/j.buildenv.2006.07.027
- Behnood, A., Olek, J. and Glinicki, M.A. (2015b), "Predicting modulus elasticity of recycled aggregate concrete using M5' model tree algorithm", Constr. Build. Mater., 94, 137-147. https://doi.org/10.1016/j.conbuildmat.2015.06.055
- Behnood, A., Verian, K.P. and Gharehveran, M.M. (2015a), "Evaluation of the splitting tensile strength in plain and steel fiber-reinforced concrete based on the compressive strength", Constr. Build. Mater., 98, 519-529. https://doi.org/10.1016/j.conbuildmat.2015.08.124
- Beycioglu, A., Emiroglu, M., Kocak, Y. and Subasi, S. (2015), "Analyzing the compressive strength of clinker mortars using approximate reasoning approaches-ANN vs MLR", Comput. Concrete, 15(1), 89-101. https://doi.org/10.12989/cac.2015.15.1.089
- Boser, B.E., Guyon, I.M. and Vapnik, V.N. (1992), "A training algorithm for optimal margin classifier", Proceedings of the 5th ACM Workshop, Pennsylvania, U.S.A., July.
- Breiman, L. (2001), "Random forests", Mach. Learn., 45(1), 5-32. https://doi.org/10.1023/A:1010933404324
- Castelli, M., Vanneschi, L. and Silva, S. (2013), "Prediction of high performance concrete strength using genetic programming with geometric semantic genetic operators", Exp. Syst. Appl., 40(17), 6856-6862. https://doi.org/10.1016/j.eswa.2013.06.037
- Crossin, E. (2015), "The greenhouse gas implications of using ground granulated blast furnace slag as a cement substitute", J. Clean. Prod., 95, 101-108. https://doi.org/10.1016/j.jclepro.2015.02.082
- Deb, P.S., Nath, P. and Sarker, P.K. (2014), "The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature", Mater. Des., 62, 32-39. https://doi.org/10.1016/j.matdes.2014.05.001
- Dellinghausen, L.M., Gastaldini, A.L.G., Vanzin, F.J. and Veiga, K.K. (2012), "Total shrinkage, oxygen permeability, and chloride ion penetration in concrete made with white Portland cement and blast-furnace slag", Constr. Build. Mater., 37, 652-659. https://doi.org/10.1016/j.conbuildmat.2012.07.076
- Duggal, S.K. (2008), Building Materials, 3rd Revised Edition, New Age International(P) Limited, New Delhi, India.
- Eiras, J.N., Segovia, F., Borrachero, M.V., Monzo, J., Bonilla, M. and Paya, J. (2014), "Physical and mechanical properties of foamed Portland cement composite containing crumb rubber from worn tires", Mater. Des., 59, 550-557. https://doi.org/10.1016/j.matdes.2014.03.021
- Freund, Y. and Schapire, R.E. (1997), "A decision-theoretic generalization of on-line learning and an application to boosting", J. Comput. Syst. Sci., 55(1), 119-139. https://doi.org/10.1006/jcss.1997.1504
- Gulbandilar, E. and Kocak, Y. (2013), "Prediction the effects of fly ash and silica fume on the setting time of Portland cement with fuzzy logic", Neur. Comput. Appl., 22(7-8), 1485-1491. https://doi.org/10.1007/s00521-012-1049-4
- Kelestemur, O., Arici, E., Yildiz, S. and Gokcer, B. (2014b), "Performance evaluation of cement mortars containing marble dust and glass fiber exposed to high temperature by using taguchi method", Constr. Build. Mater., 60, 17-24. https://doi.org/10.1016/j.conbuildmat.2014.02.061
- Kelestemur, O., Yildiz, S., Gokcer, B. and Arici, E. (2014a), "Statistical analysis for freeze-thaw resistance of cement mortars containing marble dust and glass fiber", Mater. Des., 60, 548-555. https://doi.org/10.1016/j.matdes.2014.04.013
- Liaw, A. and Wiener, M. (2002), "Classification and regression by random forest", R News, 2(3), 18-22.
- Mansouri, I. and Kisi, O. (2015), "Prediction of debonding strength for masonry elements retrofitted with FRP composites using neuro fuzzy and neural network approaches", Compos.: Part B, 70, 247-255. https://doi.org/10.1016/j.compositesb.2014.11.023
- Motamedi, S., Shamshirband, S., Petkovic, D. and Hashim, R. (2015), "Application of adaptive neuro-fuzzy technique to predict the unconfined compressive strength of PFA-sandcement mixture", Pow. Technol., 278, 278-285. https://doi.org/10.1016/j.powtec.2015.02.045
- Naghibi, T. and Pfister, B. (2014), "A boosting framework on grounds of online learning", Proceedings of the NIPS, Montreal, Canada.
- Ozcan, F., Atis, C.D., Karahan, O., Uncuoglu, E. and Tanyildizi, H. (2009), "Comparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concrete", Adv. Eng. Soft., 40(9), 856-863. https://doi.org/10.1016/j.advengsoft.2009.01.005
- Russell, S. and Norvig, P. (2003), Artificial Intelligence: A Modern Approach, 2nd Edition, Prentice Hall.
- Saade, M.R.M. and Da Silva, M.G. and Gomes, V. (2015), "Appropriateness of environmental impact distribution methods tomodel blast furnace slag recycling in cement making", Res., Conserv. Recycl., 99, 40-47. https://doi.org/10.1016/j.resconrec.2015.03.011
- Sakthivel, P.B., Ravichandran, A. and Alagumurthi, N. (2016), "Modeling and prediction of compressive strength of hybrid mesh and fiber reinforced cement-based composites using artificial neural network (ANN)", J. Geom., 10(1), 1623-1635.
- Siddiquea, R. and Bennacer, R. (2012), "Use of iron and steel industry by-product (GGBS) in cement paste and mortar resources", Conserv. Recycl., 69, 29-34. https://doi.org/10.1016/j.resconrec.2012.09.002
- Subasi, S. (2009), "Prediction of mechanical properties of cement containing class C fly ash by using artificial neural network and regression technique", Sci. Res. Ess., 4(4), 289-297.
- Teng, S., Lim, T.Y.D. and Divsholi, B.S. (2013), "Durability and mechanical properties of high strength concrete incorporating ultra fine ground granulated blast-furnace slag", Constr. Build. Mater., 40, 875-881. https://doi.org/10.1016/j.conbuildmat.2012.11.052
- Thomas, B.S. and Gupta, R.C. (2016), "A comprehensive review on the applications of waste tire rubber in cement concrete", Renew. Sustain. Energy Rev., 54, 1323-1333. https://doi.org/10.1016/j.rser.2015.10.092
- Topcu, I.B. and Saridemir, M. (2008), "Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic", Comput. Mater. Sci., 41(3), 305-311. https://doi.org/10.1016/j.commatsci.2007.04.009
- TS EN 196-1 (2009), Methods of Testing Cement-Part 1: Determination of Strength, Ankara, Turkey.
- Uygunoglu, T. and Topcu, I.B. (2010), "The role of scrap rubber particles on the drying shrinkage and mechanical properties of self-consolidating mortars", Constr. Build. Mater., 24(7), 1141-1150. https://doi.org/10.1016/j.conbuildmat.2009.12.027
- Wang, B., Man, T. and Jin, H. (2015), "Prediction of expansion behavior of self-stressing concrete by artificial neural networks and fuzzy inference systems", Constr. Build. Mater., 84, 184-191. https://doi.org/10.1016/j.conbuildmat.2015.03.059
- Yaprak, H., Karaci, A. and Demir, I. (2013), "Prediction of the effect of varying cure conditions and w/c ratio on the compressive strength of concrete using artificial neural networks", Neur. Comput. Appl., 22(1), 133-141. https://doi.org/10.1007/s00521-011-0671-x
- Yilmaz, A. and Degirmenci, N. (2009), "Possibility of using waste tire rubber and fly ash with Portland cement as construction materials", Waste Manage., 29(5), 1541-1546. https://doi.org/10.1016/j.wasman.2008.11.002
- Yung, W.H., Yung, L.C. and Hua, L.H. (2013), "A study of the durability properties of waste tire rubber applied to self-compacting concrete", Constr. Build. Mater., 41, 665-672. https://doi.org/10.1016/j.conbuildmat.2012.11.019
- Zhu, J., Zhong, Q., Chen, G. and Li, D. (2012), "Effect of particle size of blast furnace slag on properties of Portland cement", Proc. Eng., 27, 231-236. https://doi.org/10.1016/j.proeng.2011.12.448
피인용 문헌
- Failure estimation of the composite laminates using machine learning techniques vol.25, pp.6, 2017, https://doi.org/10.12989/scs.2017.25.6.663
- Patch load resistance of longitudinally stiffened webs: Modeling via support vector machines vol.29, pp.3, 2017, https://doi.org/10.12989/scs.2018.29.3.309
- Predicting the Permeability of Pervious Concrete Based on the Beetle Antennae Search Algorithm and Random Forest Model vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/8863181
- Prediction of the Compressive Strength of Concrete Admixed with Metakaolin Using Gene Expression Programming vol.2020, pp.None, 2017, https://doi.org/10.1155/2020/8883412
- Method using XFEM and SVR to predict the fatigue life of plate-like structures vol.73, pp.4, 2017, https://doi.org/10.12989/sem.2020.73.4.455