Acknowledgement
Supported by : Opening Foundation of State Key Laboratory of Green Building Materials
References
- Behnood, A., Tittelboom, K.V. and Belie, N.D. (2016), "Methods for measuring pH in concrete", Constr. Build. Mater., 105, 176-188. https://doi.org/10.1016/j.conbuildmat.2015.12.032
- Cruz, J.M., Fita, I.C., Soriano, L., Paya, J. and Borrachero, M.V. (2013), "The use of electrical impedance spectroscopy for monitoring the hydration products of Portland cement mortars with high percentage of pozzolans", Cement Concrete Res., 50, 51-61. https://doi.org/10.1016/j.cemconres.2013.03.019
- Despas, C., Schnitzler, V. and Janvier, P. (2014), "High-frequency impedance measurement as a relevant tool for monitoring the apatitic cement setting reaction", Acta Biomater., 10(2), 940-950. https://doi.org/10.1016/j.actbio.2013.10.019
- Dong, B.Q., Qiu, Q.W. and Gu, Z.T. (2016), "Characterization of carbonation behavior of fly ash blended cement materials by the electrochemical impedance spectroscopy method", Cement Concrete Compos., 65, 118-127. https://doi.org/10.1016/j.cemconcomp.2015.10.006
- Dong, B.Q., Wang, Y.S., Ding, W.J. and Li, S.T. (2014), "Electrochemical impedance study on steel corrosion in the simulated concrete system with a novel self-healing microcapsule", Constr. Build. Mater., 56, 1-6. https://doi.org/10.1016/j.conbuildmat.2014.01.070
- Duarte, R.G., Castela, A.S., Neves, R. and Freire, L. (2014), "Corrosion behavior of stainless steel rebars embedded in concrete: An electrochemical impedance spectroscopy study", Electrochim. Acta, 124, 218-224. https://doi.org/10.1016/j.electacta.2013.11.154
- Duff, G.S., Morris, W., Raspini, I. and Saragovi, C. (2004), "A study of steel rebars embedded in concrete during 65 years", Corros. Sci., 46(9), 2143-2157. https://doi.org/10.1016/j.corsci.2004.01.006
- Han, B.G., Zhang, K., Yu, X., Kwon, E. and Ou, J.P. (2012), "Electrical characteristics and pressure-sensitive response measurements of carboxyl MWNT/cement composites", Cement Concrete Compos., 34(6), 794-800. https://doi.org/10.1016/j.cemconcomp.2012.02.012
- Huet, B., L'Hostis, V., Miserque, F. and Idrissi, H. (2005), "Electrochemical behavior of mild steel in concrete: Influence of pH and carbonate content of concrete pore solution", Electrochim. Acta, 51(1), 172-180. https://doi.org/10.1016/j.electacta.2005.04.014
- Kouril, M., Novak, P. and Bojko, M. (2010), "Threshold chloride concentration for stainless steels activation in concrete pore solutions", Cement Concrete Res., 40(3), 431-436. https://doi.org/10.1016/j.cemconres.2009.11.005
- Leemann, A., Nygaard, P., Kaufmann, J. and Loser, R. (2015), "Relation between carbonation resistance, mix design and exposure of mortar and concrete", Cement Concrete Compos., 62, 33-43. https://doi.org/10.1016/j.cemconcomp.2015.04.020
- Li, L. and Sagues, A.A. (2001), "Chloride corrosion threshold of reinforcing steel in alkaline solutions-open circuit immersion tests", Corros., 57(1), 19-28. https://doi.org/10.5006/1.3290325
- McPolin, D.O., Basheer, P.A.M. and Long, A.E. (2009), "Carbonation and pH in concretes manufactured with supplementary cementitious materials", J. Mater. Civil Eng., 21(5), 217-225. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:5(217)
- Ortega, J.M., Sanchez, I. and Climent, M.A. (2015), "Impedance spectroscopy study of the effect of environmental conditions in the microstructure development of OPC and slag cement mortars", Arch. Civil Mech. Eng., 15(2), 569-583. https://doi.org/10.1016/j.acme.2014.06.002
- Papadakis, V.G. (2000), "Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress", Cement Concrete Res., 30(2), 291-299. https://doi.org/10.1016/S0008-8846(99)00249-5
- Pradhan, B. (2014), "Corrosion behavior of steel reinforcement in concrete exposed to composite chloride-sulfate environment", Constr. Build. Mater., 72, 398-410. https://doi.org/10.1016/j.conbuildmat.2014.09.026
- Pu, Q., Jiang, L.H., Xu, J.X., Chu, H.Q., Xu, Y. and Zhang, Y. (2012), "Evolution of pH and chemical composition of pore solution in carbonated concrete", Constr. Build. Mater., 28(1), 519-524. https://doi.org/10.1016/j.conbuildmat.2011.09.006
- Villat, C., Tran, V.X. and Nelly, P.P. (2010), "Impedance methodology: A new way to characterize the setting reaction of dental cements", Dent. Mater., 26(12), 1127-1132. https://doi.org/10.1016/j.dental.2010.07.013
- Xu, J.X., Jiang, L.H. and Wang, J.X. (2009), "Influence of detection methods on chloride threshold value for the corrosion of steel reinforcement", Constr. Build. Mater., 23(5), 1902-1908. https://doi.org/10.1016/j.conbuildmat.2008.09.011
- Zhang, D.W., Cao, Z.G., Fan, L.B., Liu, S.G. and Liu, W.Z. (2014), "Evaluation of the influence of salt concentration on cement stabilized clay by electrical resistivity measurement method", Eng. Geol., 170, 80-88. https://doi.org/10.1016/j.enggeo.2013.12.010
Cited by
- Ingress of chloride ions with carbonation: parameter estimation and analytical simplification pp.2116-7214, 2018, https://doi.org/10.1080/19648189.2018.1528894
- Algorithms to measure carbonation depth in concrete structures sprayed with a phenolphthalein solution vol.9, pp.3, 2017, https://doi.org/10.12989/acc.2020.9.3.257
- Numerical model for local corrosion of steel reinforcement in reinforced concrete structure vol.27, pp.4, 2017, https://doi.org/10.12989/cac.2021.27.4.385
- Climatic Issue in an Advanced Numerical Modeling of Concrete Carbonation vol.13, pp.11, 2017, https://doi.org/10.3390/su13115994