Acknowledgement
Supported by : FCT-Foundation
References
- Aleksander, I. and Morton, H. (1990), An Introduction to Neural Computing, Chapman & Hall.
- Ben-Hur, A. and Weston, J. (2010), A User's Guide to Support Vector Machines, Humana Press, New York, U.S.A.
- Benzaid, R. and Mesbah, H.A. (2013), "Circular and square concrete columns externally confined by CFRP composite: Experimental investigation and effective strength models", InTech, 167-201.
- Berk, R.A. (2008), Statistical Learning from a Regression Perspective, Springer-Verlag, New York, U.S.A.
- Berthet, J.F., Ferrier, E. and Hamelin, P. (2005), "Compressive behaviour of concrete externally confined by composite jackets", Constr. Build. Mater., 19(3), 223-232. https://doi.org/10.1016/j.conbuildmat.2004.05.012
- Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J. (1984), Classification and Regression Trees, Chapman & Hall/CRC.
- Cevik, A. (2011), "Modeling strength enhancement of FRP confined concrete cylinders using soft computing", Exp. Syst. Appl. 38(5), 5662-5673. https://doi.org/10.1016/j.eswa.2010.10.069
- Cevik, A. and Cabalar, A.F. (2008), "A genetic-programming-based formulation for the strength of fiber-reinforced-polymer-confined concrete cylinders", J. Appl. Poly. Sci., 110(5), 3087-3095. https://doi.org/10.1002/app.28839
- Cevik, A. and Guzelbey, I.H. (2008), "Neural network modeling of strength enhancement for CFRP confined concrete cylinders", Build. Environ., 43(5), 751-763. https://doi.org/10.1016/j.buildenv.2007.01.036
- Cevik, A., Gogus, M.T., Guzelbey, I.H. and Filiz, H. (2010), "Soft computing based formulation for strength enhancement of CFRP confined concrete cylinders", Adv. Eng. Soft., 41(4), 527-536. https://doi.org/10.1016/j.advengsoft.2009.10.015
- Cherkassy, V. and Ma, Y. (2004), "Practical selection of SVM parameters and noise estimation for SVM regression", Neur. Net., 17(1), 113-126. https://doi.org/10.1016/S0893-6080(03)00169-2
- Coimbra, R., Rodriguez-Galiano, V., Oloriz, F. and Chica-Olmo, M. (2014), "Regression trees for modelling geomechanical data-an application to late jurassic carbonates (ammonitico rosso)", Comput. Geosci., 73, 198-207. https://doi.org/10.1016/j.cageo.2014.09.007
- Cortes, C. and Vapnik, V. (1995), "Support vector networks", Mach. Learn., 20(3), 273-297. https://doi.org/10.1007/BF00994018
- Cortez, P. (2010), "Data mining with neural networks and support vector machines using the r/rminer tool", Proceedings of the 10th Industrial Conference on Data Mining, Advances in Data Mining, Applications and theoretical aspects, Berlin, Germany.
- Cover, T.M. (1968), "Estimation by the nearest neighbor rule", IEEE Trans. Informat. Theor., 14(1), 50-55. https://doi.org/10.1109/TIT.1968.1054098
- Cover, T.M. and Hart, P.E. (1967), "Nearest neighbor pattern classification", IEEE Trans. Informat. Theor., 13(1), 21-27. https://doi.org/10.1109/TIT.1967.1053964
- Cristianini, N. and Shawe-Taylor, J. (2000), An Introduction to Support Vector Machine, University Press, London, U.K.
- Czajkowski, M. and Kretowski, M. (2016), "The role of decision trees representation in regression problems-an evolutionary perspective", Appl. Soft Comput., 48, 458-475. https://doi.org/10.1016/j.asoc.2016.07.007
- Deniaud, C. and Neale, K.W. (2006), "An assessment of constitutive models for concrete columns confined with fiber composite sheets", Compos. Struct., 73(3), 318-330. https://doi.org/10.1016/j.compstruct.2005.02.003
- Dibike, Y.B., Velickov, S., Solomatine, D.P. and Abbott, M.B. (2001), "Model introduction with support vector machines; introduction and applications", J. Comput. Civil Eng., 15(3), 208-216. https://doi.org/10.1061/(ASCE)0887-3801(2001)15:3(208)
- Dong, C.X., Kwana, A.K.H. and Hob, J.C.M. (2015), "Effects of confining stiffness and rupture strain on performance of FRP confined concrete", Eng. Struct., 97, 1-14. https://doi.org/10.1016/j.engstruct.2015.03.037
- Doran, B., Yetilmezsoy, K. and Murtazaoglu, S. (2015), "Application of fuzzy logic approach in predicting the lateral confinement coefficient for RC columns wrapped with CFRP", Eng. Struct., 88, 74-91. https://doi.org/10.1016/j.engstruct.2015.01.039
- Downing, K.L. (2015), Intelligence Emerging: Adaptative and Search in Evolving Neural System, MIT Press, U.S.A.
- Efron, B. and Tibshirani, R. (1993), An Introduction to the Bootstrap, Chapman & Hall.
- Fayyad, U., Piatesky-Shapiro, G. and Smyth, P. (1996), From Data Mining to Knowledge Discovery: An Overview, IAAAI Press/The MIT Press, Cambridge MA, 471-493.
- Gandomi, M., Alavi, A.H. and Sahab, M.G. (2010), "New formulation for compressive strength of CFRP confined concrete cylinders using linear genetic programming", Mater. Struct., 43(7), 963-983. https://doi.org/10.1617/s11527-009-9559-y
- Green, M.F., Bisby, L.A., Fam, A.Z. and Kodur, V.K.R. (2006), "FRP confined concrete columns: Behaviour under extreme conditions", Cement Concrete Compos., 28(10), 928-937. https://doi.org/10.1016/j.cemconcomp.2006.07.008
- Gupta, S.M. (2007), "Support vector machines based modelling of concrete strength", World Acad. Sci. Eng. Technol., 36, 305-311.
- Harajli, M.H., Hantouche, E. and Soudki, K. (2006), "Stress-strain model for fiber-reinforced polymer jacketed concrete columns", ACI Struct. J., 105(5), 672-682.
- Haykin, S. (1999), Neural Networks-A Comprehensive Foundation, 2nd Edition, Prentice-Hall, New Jersey, U.S.A.
- Hechenbichler, K. and Schliep, K. (2004), "Weighted k-nearest-neighbor techniques and ordinal classification", Ph.D. Dissertation, Ludwig-Maximilians University Munich, Germany.
- Hollaway, L.C. (2004), Advanced Polymer Composites for Structural Applications in Construction: ACIC, Woodhead Publishing, U.K.
- Ilonen, J., Kamarainen, J.K. and Lampinen, J. (2003), "Differential evolution training algorithm for feed-forward neural network", Neur. Proc. Lett., 17(1), 93-105. https://doi.org/10.1023/A:1022995128597
- Jalal, M., Ramezanianpour, A.A., Pouladkhan, A.R. and Tedro, P. (2013), "Application of genetic programming (GP) and ANFIS for strength enhancement modeling of CFRP-retrofitted concrete cylinders", Neur. Comput. Appl., 23(2), 455-470. https://doi.org/10.1007/s00521-012-0941-2
- Kewley, R., Embrechts, M. and Brenemam, C. (2000), "Data strip mining for the virtual design of pharmaceuticals with neural networks", IEEE Trans. Neur. Net., 11(3), 668-679. https://doi.org/10.1109/72.846738
- Kim, J.I. and Kim, D.K. (2002), "Application of neural networks for estimation of concrete strength", KSCE J. Civil Eng., 6(4), 429-438. https://doi.org/10.1007/BF02841997
- Kumutha, R., Vaidyanathan, R. and Palanichamy, M.S. (2007), "Behaviour of reinforced concrete rectangular columns strengthened using GFRP", Cement Concrete Compos., 29(8), 609-615. https://doi.org/10.1016/j.cemconcomp.2007.03.009
- Lai, S. and Serra, M. (1997), "Concrete strength prediction by means of neural network", Constr. Build. Mater., 11(2), 93-98. https://doi.org/10.1016/S0950-0618(97)00007-X
- Lam, L., Teng, J.G., Cheng, C.H. and Xiao, Y. (2006), "FRP-confined concrete under axial cyclic compression", Cement Concrete Res., 28(10), 949-958. https://doi.org/10.1016/j.cemconcomp.2006.07.007
- Lee, C. and Hegemier, G.A. (2009), "Model of FRP-confined concrete cylinders in axial compression", J. Compos. Constr., 13(5), 442-454. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000029
- Leung, C.K.Y., Ng, M.Y.M. and Luk, H.C.Y. (2006), "Empirical approach for determining ultimate FRP strain in FRP-strengthened concrete beams", J. Compos. Constr., 10(2), 125-138. https://doi.org/10.1061/(ASCE)1090-0268(2006)10:2(125)
- Liang, Y., Xu, Q.S., Li, H.D. and Cao, D.S. (2011), Support Vector Machines and Their Application in Chemistry and Biotechnology, Taylor & Francis CRC Press.
- Martins, F.F. and Camoes, A. (2013), "Prediction of compressive strength of concrete containing fly ash using data mining techniques", Cement WapnoBeton, XVIII/LXXX(1), 39-51.
- Martins, F.F. and Miranda, T.F.S. (2012), "Estimation of the rock deformation modulus and RMR based on data mining techniques", Geotech. Geol. Eng., 30(4), 787-801. https://doi.org/10.1007/s10706-012-9498-1
- Matthys, S., Toutanji, H., Audenaert, K. and Taerwe, L. (2005), "Axial load behavior of largescale columns confined with fiber-reinforced polymer composites", ACI Struct. J., 102(2), 258-267.
- Mirmiran, A. and Shahawy, M. (1997), "Behavior of concrete columns confined by fiber composites", J. Struct. Eng., 123(5), 583-590. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:5(583)
- Nguyen, B., Morell, C. and Baets, B.D. (2016), "Large scale distance metric learning for k-nearest neighbors regression", Neurocomput., 214, 805-814. https://doi.org/10.1016/j.neucom.2016.07.005
- Nielsen, M. (2016), Neural Networks and Deep Learning.
- Parvin, A. and Jamwal, A.S. (2005), "Effects of wrap thickness and ply configuration on composite-confined concrete cylinders", Compos. Struct., 67(4), 437-442. https://doi.org/10.1016/j.compstruct.2004.02.002
- Pessiki, S., Harries, K.A., Kestner, J.T., Sause, R. and Ricles, J.M. (2001), "Axial behaviour of reinforced concrete columns confined with FRP jackets", Compos. Constr., 5(4), 237-245. https://doi.org/10.1061/(ASCE)1090-0268(2001)5:4(237)
- Quinlan, J. (1986), "Induction of decision trees", Mach. Learn., 1(1), 81-106. https://doi.org/10.1007/BF00116251
- Richart, F.E., Brandtzaeg, A. and Brown, R.L. (1929), "The failure of plain and spirally reinforced concrete in compression", Ph.D. Dissertation, University of Illinois, Urbana, U.S.A.
- Sadeghian, P., Rahai, A.R. and Ehsani, M.R. (2008), "Numerical modeling of concrete cylinders confined with CFRP composites", J. Reinfor. Plast. Compos., 27(12), 1309-1321. https://doi.org/10.1177/0731684407084212
- Saridemir, M. (2009), "Prediction of compressive strength of concretes containing metakaolin and silica fume by artificial neural networks", Adv. Eng. Soft., 40(5), 350-355. https://doi.org/10.1016/j.advengsoft.2008.05.002
- Smola, A. and Scholkopf, B. (2004), "A tutorial on support vector regression", Stat. Comput., 14(3), 199-222. https://doi.org/10.1023/B:STCO.0000035301.49549.88
- Souza, A.M.F. and Soares, F.M. (2016), Neural Network Programming with Java, Packt Publishing Ltd, Birmingham, U.K.
- Teng, J.G., Yu, T., Wong, Y.L. and Dong, S.L. (2007), "Hybrid FRP-concrete-steel tubular columns: Concept and behavior", Constr. Build. Mater., 21(4), 846-854. https://doi.org/10.1016/j.conbuildmat.2006.06.017
- Topcu, I.B. and Saridemir, M. (2008), "Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic", Comput. Mater. Sci., 41(3), 305-311. https://doi.org/10.1016/j.commatsci.2007.04.009
- Toutanji, H.A. (1999), "Stress-strain characteristics of concrete columns externally confined with advanced fiber composites sheets", ACI Mater. J., 96(3), 397-404.
- Toutanji, H.A. and Deng, Y. (2001), "Strength and durability performance of concrete axially loaded members confined with AFRP composites sheets", Compos. Part B: Eng., 33(4), 255-261. https://doi.org/10.1016/S1359-8368(02)00016-1
- Vapnik, V.N. (1998), Statistical Learning Theory, Wiley, New York, U.S.A.
- Yang, L., Dong, L. and Bi, X. (2016), "An improved location difference of multiple distances based nearest neighbors searching algorithm", Optik-J. Light Electr. Opt., 127(22), 10838-10843. https://doi.org/10.1016/j.ijleo.2016.08.091
Cited by
- Numerical formulation of confined compressive strength and strain of circular reinforced concrete columns using gene expression programming approach 2017, https://doi.org/10.1002/suco.201700131
- Patch load resistance of longitudinally stiffened webs: Modeling via support vector machines vol.29, pp.3, 2017, https://doi.org/10.12989/scs.2018.29.3.309
- Application of artificial neural networks for the prediction of the compressive strength of cement-based mortars vol.24, pp.4, 2017, https://doi.org/10.12989/cac.2019.24.4.329
- Artificial neural network calculations for a receding contact problem vol.25, pp.6, 2017, https://doi.org/10.12989/cac.2020.25.6.551
- Development and application of a floor failure depth prediction system based on the WEKA platform vol.23, pp.1, 2017, https://doi.org/10.12989/gae.2020.23.1.051
- Artificial intelligence for the compressive strength prediction of novel ductile geopolymer composites vol.28, pp.1, 2017, https://doi.org/10.12989/cac.2021.28.1.055
- Forecasting Strength of CFRP Confined Concrete Using Multi Expression Programming vol.14, pp.23, 2021, https://doi.org/10.3390/ma14237134