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A GENERALIZATION OF THE EXPONENTIAL

INTEGRAL AND SOME ASSOCIATED INEQUALITIES

Kwara Nantomah∗, Faton Merovci and Suleman Nasiru

Abstract. In this paper, a generalization of the exponential in-
tegral is given. As a consequence, several inequalities involving
the generalized function are derived. Among other analytical tech-
niques, the procedure utilizes the Hölder’s and Minkowski’s inequal-
ities for integrals.

1. Introduction

The classical exponential integral, En(x) is defined for x ∈ R+ and
n ∈ N0 by [1, p. 228]

(1) En(x) =

∫ ∞
1

t−ne−xt dt

and the a-th derivative of En(x) is given by

(2) E(a)
n (x) = (−1)a

∫ ∞
1

ta−ne−xt dt.

The function En(x) is related to the incomplete Gamma function, Γ(r, x)
by [5]

En(x) = xn−1Γ(1− n, x).

The exponential integral belongs to the class of special functions which
have been vigorously studied in recent years. For some new trends in
this class of functions, one could refer to [2] and the references therein.

In [7], the author established some inequalities involving the exponential
integral and its derivatives. Motivated by the results of [7] and the
k-Gamma function defined in [3], the aim of this paper is to give a
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generalization of the exponential integral and to further derive some
inequalities for the generalized function. The results are presented in
the following sections.

2. Definition and Some Properties

Definition 2.1. Let k > 0, s ≥ 1, n ∈ N0, a ∈ N such that a >
n. Then the (k, s)-generalization or (k, s)-analogue of the exponential
integral is defined as

(3) Ek,s,n(x) =

∫ ∞
s

t−ne−
xtk

k dt

and the a-th derivative of Ek,s,n(x) is given by

(4) E
(a)
k,s,n(x) =

(
−1

k

)a ∫ ∞
s

tak−ne−
xtk

k dt.

In particular, it follows easily that E1,1,n(x) = En(x), E
(a)
1,1,n(x) =

E
(a)
n (x) and E

(0)
k,s,n(x) ≡ Ek,s,n(x).

Lemma 2.2. The following statements are valid for x > 0.

(a) Ek,s,n(x) is decreasing.

(b) E
(a)
k,s,n(x) is positive and decreasing if a is even.

(c) E
(a)
k,s,n(x) is negative and increasing if a is odd.

(d)
∣∣∣E(a)

k,s,n(x)
∣∣∣ is decreasing for all a ∈ N.

Proof. The proofs of (a), (b) and (c) follow easily from (3) and (4).
The proof of (d) is as follows. Let x ≤ y. Then,∣∣∣E(a)

k,s,n(x)
∣∣∣− ∣∣∣E(a)

k,s,n(y)
∣∣∣ =

1

ka

[∫ ∞
s

tak−n
(
e−

xtk

k − e−
ytk

k

)
dt

]
≥ 0

since e−x is decreasing for x > 0.

Lemma 2.3. The function Ek,s,n(x) is completely monotonic. That

is, (−1)aE
(a)
k,s,n(x) ≥ 0 for every x > 0 and a ∈ N0.

Proof. By (4), we obtain

(−1)aE
(a)
k,s,n(x) = (−1)a

(
−1

k

)a ∫ ∞
s

tak−ne−
xtk

k dt

=
1

ka

∫ ∞
s

tak−ne−
xtk

k dt ≥ 0.
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which concludes the proof.

3. Some Inequalities for the function Ek,s,n(x)

Theorem 3.1. Let k > 0, s ≥ 1, α > 1, 1
α + 1

β = 1 and n ∈ N0.

Then, the inequality

(5) Ek,s,n

(
x

α
+
y

β

)
≤ (Ek,s,n(x))

1
α (Ek,s,n(y))

1
β

holds for x > 0 and y > 0.

Proof. By (3) we obtain

Ek,s,n

(
x

α
+
y

β

)
=

∫ ∞
s

t−ne
− t

k

k

(
x
α
+ y
β

)
dt

=

∫ ∞
s

t
−n
(

1
α
+ 1
β

)
e
− t

k

k

(
x
α
+ y
β

)
dt

=

∫ ∞
s

t−
n
α e−

xtk

αk t
−n
β e
− yt

k

βk dt

≤
(∫ ∞

s
t−ne−

xtk

k dt

) 1
α
(∫ ∞

s
t−ne−

ytk

k dt

) 1
β

= (Ek,s,n(x))
1
α (Ek,s,n(y))

1
β .

Theorem 3.2. Let k > 0, s ≥ 1, α > 1, 1
α + 1

β = 1 and m,n ∈ N0

such that αm, βn ∈ N0. Then, the inequality

(6) Ek,s,m+n

(
x

α
+
y

β

)
≤ (Ek,s,αm(x))

1
α (Ek,s,βn(y))

1
β

holds for x > 0 and y > 0.

Proof. By (3) we obtain

Ek,s,m+n

(
x

α
+
y

β

)
=

∫ ∞
s

t−(m+n)e
− t

k

k

(
x
α
+ y
β

)
dt

=

∫ ∞
s

t−me−
xtk

αk t−ne
− yt

k

βk dt

≤
(∫ ∞

s
t−αme−

xtk

k dt

) 1
α
(∫ ∞

s
t−βne−

ytk

k dt

) 1
β

= (Ek,s,αm(x))
1
α (Ek,s,βn(y))

1
β .
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Corollary 3.3. Let k > 0, s ≥ 1 and m,n ∈ N0. Then, the inequality

(Ek,s,m+n(x))2 ≤ Ek,s,2m(x).Ek,s,2n(x)

holds for x > 0.

Proof. This follows from Theorem 3.2 by setting x = y and α = β =
2.

Remark 3.4. Theorem 3.2 generalizes the result of Theorem 2.2 of
[7].

Theorem 3.5. Let k > 0, s ≥ 1, α > 1, 1
α + 1

β = 1 and m,n ∈ N0

such that m
α + n

β ∈ N0. Then, the inequality

(7) Ek,s,m
α
+n
β

(
x

α
+
y

β

)
≤ (Ek,s,m(x))

1
α (Ek,s,n(y))

1
β

holds for x > 0 and y > 0.

Proof. We proceed as follows.

Ek,s,m
α
+n
β

(
x

α
+
y

β

)
=

∫ ∞
s

t
−(m

α
+n
β
)
e
− t

k

k

(
x
α
+ y
β

)
dt

=

∫ ∞
s

t−
m
α e−

xtk

αk t
−n
β e
− yt

k

βk dt

≤
(∫ ∞

s
t−me−

xtk

k dt

) 1
α
(∫ ∞

s
t−ne−

ytk

k dt

) 1
β

= (Ek,s,m(x))
1
α (Ek,s,n(y))

1
β .

Remark 3.6. By letting k = s = 1 and x = y in Theorem 3.5, we
obtain the result of Theorem 4.1 of [6]. If in addition, α = β = 2, then
we obtain the result

Em+n
2

(x) ≤ Em(x)En(x)

which was mentioned in [4].

Theorem 3.7. Let k > 0, s ≥ 1, n ∈ N0 and x, y, α > 1 such that
1
x + 1

y ≤ 1 and 1
α + 1

β = 1. Then, the inequality

(8) Ek,s,n(xy) ≤ (Ek,s,n(αx))
1
α (Ek,s,n(βy))

1
β

is valid.
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Proof. From the hypothesis, we have x+y ≤ xy. Then, since Ek,s,n(x)
is decreasing for x > 0, we obtain

Ek,s,n(xy) ≤ Ek,s,n(x+ y) =

∫ ∞
s

t
−n
(

1
α
+ 1
β

)
e−

tk

k
(x+y) dt

=

∫ ∞
s

t−
n
α e−

xtk

k t
−n
β e−

ytk

k dt

≤
(∫ ∞

s
t−ne−

αxtk

k dt

) 1
α
(∫ ∞

s
t−ne−

βytk

k dt

) 1
β

= (Ek,s,n(αx))
1
α (Ek,s,n(βy))

1
β .

Remark 3.8. Theorem 3.7 generalizes the result of Theorem 2.4 of
[7].

Theorem 3.9. Let k > 0, s ≥ 1, m,n ∈ N0 and u ∈ Z+. Then, the
inequality

(9) [Ek,s,m(x) + Ek,s,n(y)]
1
u ≤ [Ek,s,m(x)]

1
u + [Ek,s,n(y)]

1
u

is valid for x > 0 and y > 0.

Proof. Here we employ the Minkowski’s inequality for integrals, and
the fact that au + bu ≤ (a+ b)u, for a, b ≥ 0 and u ∈ Z+. We proceed as
follows.

[Ek,s,m(x) + Ek,s,n(y)]
1
u =

[∫ ∞
s

t−me−
xtk

k dt+

∫ ∞
s

t−ne−
ytk

k dt

] 1
u

=

[∫ ∞
s

((
t−

m
u e−

xtk

ku

)u
+

(
t−

n
u e−

ytk

ku

)u)
dt

] 1
u

≤
[∫ ∞

s

((
t−

m
u e−

xtk

ku

)
+

(
t−

n
u e−

ytk

ku

))u
dt

] 1
u

≤
[∫ ∞

s
t−me−

xtk

k dt

] 1
u

+

[∫ ∞
s

t−ne−
ytk

k dt

] 1
u

= [Ek,s,m(x)]
1
u + [Ek,s,n(y)]

1
u .
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4. Some Inequalities for the function E
(a)
k,s,n(x)

Theorem 4.1. Let k > 0, s ≥ 1, n ∈ N0 and a ∈ N. Then for x > 0
and y > 0, the following inequalities are valid.

(10) E
(a)
k,s,n(x+ y) ≤ E(a)

k,s,n(x) + E
(a)
k,s,n(y)

if a is even, and

(11) E
(a)
k,s,n(x+ y) ≥ E(a)

k,s,n(x) + E
(a)
k,s,n(y)

if a is odd.

Proof. Let a be even and φ(x) = E
(a)
k,s,n(x+ y)−E(a)

k,s,n(x)−E(a)
k,s,n(y).

Then for a fixed y, we obtain

φ′(x) = E
(a+1)
k,s,n (x+ y)− E(a+1)

k,s,n (x)

= − 1

ka+1

∫ ∞
s

t(a+1)k−n
(
e−

(x+y)tk

k − e−
xtk

k

)
dt

≥ 0.

Thus, φ(x) is increasing. Further,

lim
x→∞

φ(x) = lim
x→∞

[
E

(a)
k,s,n(x+ y)− E(a)

k,s,n(x)− E(a)
k,s,n(y)

]
=

(
−1

k

)a
lim
x→∞

[∫ ∞
s

tak−n
(
e−

(x+y)tk

k − e−
xtk

k − e−
ytk

k

)
dt

]
= −

(
−1

k

)a ∫ ∞
s

tak−ne−
ytk

k dt

= − 1

ka

∫ ∞
s

tak−ne−
ytk

k dt

≤ 0.

Therefore, φ(x) ≤ 0 yielding the result (10). Next, suppose a is odd.
Then by the same technique, we obtain φ′(x) ≤ 0 and limx→∞ φ(x) ≥ 0
implying that φ(x) ≥ 0 which yields the result (11).

Remark 4.2. Theorem 4.1 generalizes and extends the result of The-
orem 2.3 of [7].

Theorem 4.3. Let k > 0, s ≥ 1, n ∈ N0 and x, y, α > 1 such that
1
x + 1

y ≤ 1 and 1
α + 1

β = 1. Then, the inequality

(12)
∣∣∣E(a)

k,s,n(xy)
∣∣∣ ≤ ∣∣∣E(a)

k,s,n(αx)
∣∣∣ 1α ∣∣∣E(a)

k,s,n(βy)
∣∣∣ 1β
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is holds for a ∈ N.

Proof. Note that x+y ≤ xy from the hypothesis. Then since
∣∣∣E(a)

k,s,n(x)
∣∣∣

is decreasing for x > 0, we obtain∣∣∣E(a)
k,s,n(xy)

∣∣∣ ≤ ∣∣∣E(a)
k,s,n(x+ y)

∣∣∣ =
1

ka

∫ ∞
s

tak−ne−
tk

k
(x+y) dt

=

(
1

ka

) 1
α
+ 1
β
∫ ∞
s

t
ak−n
α e−

xtk

k t
ak−n
β e−

ytk

k dt

≤
(

1

ka

∫ ∞
s

tak−ne−
αxtk

k dt

) 1
α
(

1

ka

∫ ∞
s

tak−ne−
βytk

k dt

) 1
β

=
∣∣∣E(a)

k,s,n(αx)
∣∣∣ 1α ∣∣∣E(a)

k,s,n(βy)
∣∣∣ 1β .

Theorem 4.4. Let k > 0, s ≥ 1, α > 1, 1
α + 1

β = 1, a ∈ N and

m,n ∈ N0 such that αm, βn ∈ N0. Then, the inequality

(13)

∣∣∣∣E(a)
k,s,m+n

(
x

α
+
y

β

)∣∣∣∣ ≤ ∣∣∣E(a)
k,s,αm(x)

∣∣∣ 1α ∣∣∣E(a)
k,s,βn(y)

∣∣∣ 1β
is holds for x, y > 0.

Proof. We proceed as follows.∣∣∣∣E(a)
k,s,m+n

(
x

α
+
y

β

)∣∣∣∣ =
1

ka

∫ ∞
s

tak−(m+n)e
− t

k

k

(
x
α
+ y
β

)
dt

=

(
1

ka

) 1
α
+ 1
β
∫ ∞
s

t
ak
α
−me−

xtk

αk t
ak
β
−n
e
− yt

k

βk dt

≤
(

1

ka

∫ ∞
s

tak−αme−
xtk

k dt

) 1
α

×
(

1

ka

∫ ∞
s

tak−βne−
ytk

k dt

) 1
β

=
∣∣∣E(a)

k,s,αm(x)
∣∣∣ 1α ∣∣∣E(a)

k,s,βn(y)
∣∣∣ 1β .

Corollary 4.5. Let k > 0, s ≥ 1, α > 1, 1
α + 1

β = 1, a ∈ N and

n ∈ N0. Then, the inequality

(14)

∣∣∣∣E(a)
k,s,n

(
x

α
+
y

β

)∣∣∣∣ ≤ ∣∣∣E(a)
k,s,n(x)

∣∣∣ 1α ∣∣∣E(a)
k,s,n(y)

∣∣∣ 1β
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is holds for x, y > 0.

Proof. This follows from Theorem 4.4 by replacing m and n by n
α and

n
β respectively.

Theorem 4.6. Let k > 0, s ≥ 1, m,n ∈ N0, a, u ∈ N such that
a > m,n. Then, the inequality

(15)
(∣∣∣E(a)

k,s,m(x)
∣∣∣+
∣∣∣E(a)

k,s,n(y)
∣∣∣) 1

u ≤
∣∣∣E(a)

k,s,m(x)
∣∣∣ 1u +

∣∣∣E(a)
k,s,n(y)

∣∣∣ 1u
holds for x > 0 and y > 0.

Proof. We proceed as follows.(∣∣∣E(a)
k,s,m(x)

∣∣∣+
∣∣∣E(a)

k,s,n(y)
∣∣∣) 1

u

=

(
1

ka

∫ ∞
s

tak−me−
xtk

k dt+
1

ka

∫ ∞
s

tak−ne−
ytk

k dt

) 1
u

=

(
1

ka

) 1
u
(∫ ∞

s

[(
t
ak−m
u e−

xtk

ku

)u
+

(
t
ak−n
u e−

ytk

ku

)u]
dt

) 1
u

≤
(

1

ka

) 1
u
(∫ ∞

s

[(
t
ak−m
u e−

xtk

ku

)
+

(
t
ak−n
u e−

ytk

ku

)]u
dt

) 1
u

≤
(

1

ka

∫ ∞
s

tak−me−
xtk

k dt

) 1
u

+

(
1

ka

∫ ∞
s

tak−ne−
ytk

k dt

) 1
u

=
∣∣∣E(a)

k,s,m(x)
∣∣∣ 1u +

∣∣∣E(a)
k,s,n(y)

∣∣∣ 1u .
Theorem 4.7. Let k > 0, s ≥ 1, n ∈ N0, a ∈ N and β ≥ 1. Then,

the inequalities

(16)
(

expE
(a)
k,s,n(x)

)β
≥ expE

(a+1)
k,s,n (y). expE

(a−1)
k,s,n (y), if a is even

(17)
(

expE
(a)
k,s,n(x)

)β
≤ expE

(a+1)
k,s,n (y). expE

(a−1)
k,s,n (y), if a is odd

are satisfied for x > 0.
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Proof. We proceed as follows.

E
(a)
k,s,n(x)− E(a+1)

k,s,n (x)− E(a−1)
k,s,n (x)

=

(
−1

k

)a ∫ ∞
s

(
tak−n +

t(a+1)k−n

k
+ kt(a−1)k−n

)
e−

xtk

k dt

≥ (≤)0

respectively for even(odd) a. This implies,

E
(a)
k,s,n(x) ≥ E(a+1)

k,s,n (x) + E
(a−1)
k,s,n (x)

and

E
(a)
k,s,n(x) ≤ E(a+1)

k,s,n (x) + E
(a−1)
k,s,n (x)

respectively for even and odd a. Then for β ≥ 1, we obtain

βE
(a)
k,s,n(x) ≥ E(a)

k,s,n(x) ≥ E(a+1)
k,s,n (x) + E

(a−1)
k,s,n (x)

and

βE
(a)
k,s,n(x) ≤ E(a)

k,s,n(x) ≤ E(a+1)
k,s,n (x) + E

(a−1)
k,s,n (x)

respectively. Finally by exponentiation, we obtain the inequalities (16)
and (17).

Theorem 4.8. Let k > 0, s ≥ 1, n ∈ N0, a, β ∈ N and xi > 0 for
each i = 1, 2, . . . , β. Then the inequality

(18)

β∏
i=1

E
(a)
k,s,n(xi) ≥

[
E

(a)
k,s,n

(
β∑
i=1

xi

)]β
holds if a is even.

Proof. Suppose that a is even. Then

E
(a)
k,s,n(x1)− E(a)

k,s,n

(
β∑
i=1

xi

)
=

1

ka

∫ ∞
s

tak−n
(
e−

tk

k
x1 − e−

tk

k

∑β
i=1 xi

)
dt

≥ 0.

Hence,

E
(a)
k,s,n(x1) ≥ E(a)

k,s,n

(
β∑
i=1

xi

)
> 0.
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Proceeding in this manner, we obtain the following.

E
(a)
k,s,n(x2) ≥ E(a)

k,s,n

(
β∑
i=1

xi

)
> 0,

E
(a)
k,s,n(x3) ≥ E(a)

k,s,n

(
β∑
i=1

xi

)
> 0,

...
...

E
(a)
k,s,n(xβ) ≥ E(a)

k,s,n

(
β∑
i=1

xi

)
> 0.

Then multiplying these inequalities yields,

β∏
i=1

E
(a)
k,s,n(xi) ≥

[
E

(a)
k,s,n

(
β∑
i=1

xi

)]β
which concludes the proof.

Remark 4.9. In particular, by letting β = 2, x1 = x and x2 = y in
Theorem 4.8, we obtain the inequality

E
(a)
k,s,n(x)E

(a)
k,s,n(y) ≥

[
E

(a)
k,s,n(x+ y)

]2
.

5. Conclusion

In this study, a generalization of the exponential integral has been given
and some basic monotonicity properties discussed. As applications, some
interesting inequalities involving the generalized function are derived.
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