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THE ORIENTABILITY OF REAL TORIC MANIFOLDS

Jin Hong Kim∗

Abstract. The aim of this short paper is to give a new necessary
and sufficient condition, topological in nature, for certain real toric
manifolds to be orientable in terms of the connectedness of their
particular submanifolds of codimension zero.

1. Introduction and main results

Let P be a connected manifold with corners of dimension n that is
also nice in that every codimension-k face is a connected component
of the intersections of k facets. Here a facet of P is defined to be a
face of codimension-1 face of P . A typical example of a nice manifold
with corners is a simple convex polytope, and there are examples of a
manifold with corners that is not nice. Note also that not every nice
manifold with corners has connected intersections of faces.

Given a nice manifold P with corners, let F denote the collection of
all facets F1, F2, . . . , Fm of P , and let

λ : F → Zn

be a characteristic function on F such that

(1) λ(Fi) is a primitive vector for each i ∈ [m] := {1, 2, . . . ,m}, and
(2) for a non-empty PI := ∩i∈IFi for I ⊂ [m], λ(Fi)’s are linearly

independent over Q.

Let S1 be the unit circle of complex numbers in C, and let Tn = (S1)n.
For a non-empty PI , we can form an abelian subgroup Tn

I of Tn gener-
ated by λ(Fi)’s for i ∈ I. Then one can construct a manifold X(P, λ)
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by using the quotient space

X(P, λ) = (P × Tn)/ ∼ .
Here, the equivalence relation ∼ on the product space P × Tn is given
by

(x, t) ∼ (y, s) if and only if x = y and t−1s ∈ Tn
I ,

where I is a subset of [m] such that PI is the minimal face of P containing
x = y. The manifold X(P, λ) is usually called a toric manifold, and, in
general, X is just an orbifold. Further, it admits a Tn-action induced
from the natural Tn-action on the second factor of P × Tn whose orbit
space is P itself. Hence there is a quotient map

π : X(P, λ)→ P = X(P, λ)/Tn.

For the sake of simplicity, we shall also use the notation X for X(P, λ)
if there is no confusion. A typical example of a toric manifold can be
provided by the natural action of Tn on the complex projective space
CPn associated to the n-simplex ∆n. See [1], [2], and [3] for more details.

Instead of S1 and Tn, we may repeat the above construction with
Z2 = {0, 1} and

Zn
2 = Z2 × · · · × Z2︸ ︷︷ ︸

n times

to obtain a real toric manifold X(P, λR) of dimension n for a character-
istic function λR : F → Zn

2 . However, note that the image λ(Fi) of a
characteristic function λR is always primitive and that every linearly in-
dependent vectors in Zn

2 is a part of a basis of Zn
2 . So the quotient space

X(P, λR) with the quotient map π : X(P, λR) → P is always smooth.
As in the case of X(P, λ), X(P, λR) has a Zn

2 -fixed point if and only if
P has a vertex. As in the case of X(P, λ), we shall also use the notation
XR for X(P, λR) if there is no confusion.

One example of a real toric manifold can be given by the natural
action of Zn

2 on the real projective space RPn associated to the n-simplex
∆n. When P is a simple convex polytope, XR is very often called a small
cover in the literature (see [3]).

In order to explain our main result more precisely, we first set

P (n−2) =
⋃

I⊂[m],
|I|≥2

PI ,

where PI denotes the intersection of all facets Fi’s for i ∈ I ⊂ [m], i.e.,

PI = ∩i∈I⊂[m]Fi. Let P ′ be a small tubular neighborhood of P (n−2) in

P , X ′R = π−1(P ′), and (X ′R)◦ the interior of X ′R.
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The aim of this paper is to characterize the orientability of real toric
manifolds in terms of the connectedness of their particular submanifolds,
as follows.

Theorem 1.1. Let P be a nice manifold with corners of dimension
n ≥ 2 with m facets, and let XR = X(P, λR) be a real toric manifold
for a characteristic function λR with the quotient map π : XR → P .
Assume that

P (n−2) =
⋃

I⊂[m],
|I|≥2

PI

is non-empty and that XR\(X ′R)◦ is orientable. Then we have

Hn(XR;Z) ∼= H0(XR\(X ′R)◦;Z).

As a consequence, in this case XR is orientable if and only XR\(X ′R)◦ is
connected.

As is remarked as above, simple convex polytopes are typical ex-
amples of nice manifolds P with corners in Theorem 1.1. There are
some earlier works [6, Theorem 1.7], [7, Theorem 3.2], and [5, Section
4] which give a necessary and sufficient condition for the orientability of
small covers or the so-called 2-torus manifolds. Here a 2-torus manifold
of dimension n is a closed smooth manifold of dimension n with an ef-
fective action of Zn

2 . Theorem 1.1 gives a new necessary and sufficient
condition for real toric manifolds to be orientable, which is topological
in nature.

We organize this paper, as follows. In Section 2, we give a proof of
Theorem 1.1. In the same section, we also give some immediate but also
relevant consequences of Theorem 1.1 for simple convex polytopes (refer
to Corollaries 2.2 and 2.3).

Finally, we remark that this paper has been partially motivated by
the paper [4] and the technique of Yeroshkin in [8] that deletes a small
neighborhood of the singular set in X(P, λ) in order to obtain a smooth
part and investigates the relation of the cohomology groups between
X(P, λ) and the smooth part. To be a little more precise, the paper
[4] studies the torsion in the integral cohomology of a certain family
of 2n-dimensional orbifolds X(P, λ) with actions of the n-dimensional
compact torus. However, it should be also remarked that at the moment
there seems to be some problem in [4, Lemma 6.3] and so their main
Theorem in [4, p. 2] seems to be affected accordingly.
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2. Proof of Theorem 1.1

The aim of this section is to give a proof of Theorem 1.1.
To do so, as before let P be a nice manifold with corners of dimension

n ≥ 2 with m facets, and let XR = (P, λR) be a real toric manifold for a
characteristic function λR with the quotient map π : XR → P . For each
2 ≤ s ≤ n, let

P (n−s) =
⋃

I⊂[m],
|I|≥s

PI ,

where PI denotes the intersection of all Fi’s for i ∈ I ⊂ [m], i.e., PI =

∩i∈I⊂[m]Fi. Let P ′ be a small tubular neighborhood of P (n−s) in P , and
let

X ′R = π−1(P ′).

From now on, all cohomology groups will be taken with integer coeffi-
cients, unless stated otherwise.

For the case of s = 2, we first have the following

Theorem 2.1. Let P and XR be the same as above. Assume that
P (n−2) =

⋃
I⊂[m],
|I|≥2

PI is non-empty and that XR\(X ′R)◦ is orientable.

Then we have

Hn(XR;Z) ∼= H0(XR\(X ′R)◦;Z).

As a consequence, in this case XR\(X ′R)◦ is connected if and only if XR
is orientable.

Proof. To prove it, note first that X ′R is homotopy equivalent to

π−1(P (n−2)). Since the dimension of π−1(P (n−2)) is equal to n − 2,
we should have

(1) H l(X ′R;Z) = 0

for all l ≥ n− 1.
Next we consider the following long exact sequence for the pair (X,X ′R),

as follows.

−→ Hn−1(XR, X
′
R) −→ Hn−1(XR) −→ Hn−1(X ′R)

−→ Hn(XR, X
′
R) −→ Hn(XR) −→ Hn(X ′R)

−→ 0.

(2)

Then it easily follows from (1) and (2) that we have

(3) Hn(XR, X
′
R;Z) ∼= Hn(XR;Z).
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Note also that by excision and Poincaré-Lefschetz duality we have

(4) Hn(XR, X
′
R) ∼= Hn(XR\(X ′R)◦, ∂X ′R) ∼= H0(XR\(X ′R)◦),

where as before (X ′R)◦ denotes the interior of X ′R, and excision (resp.
Poincaré-Leschetz duality) is used in the first (resp. second) equality.
Note that we need the orientabilty of XR\(X ′R)◦ in order to apply the
Poincaré-Lefschetz duality as in the above equation (4). Hence by (3)
and (4) we have

Hn(XR;Z) ∼= H0(XR\(X ′R)◦;Z),

as desired.

As before, let F be the collection of all facets Fi of P , and let

λiR : Fi → Zn−1
2

be the characteristic function given by composing λR : F → Zn
2 and the

quotient map

Zn
2 → Zn

2/〈λR(Fi)〉 ∼= Zn−1
2 .

Note that each facet Fi is a nice manifold with corners, whenever P is
so. Thus, for each 1 ≤ i ≤ m we can obtain a real toric manifold

XR(Fi) = XR(Fi, λ
i
R)

which is equivariantly diffeomorphic to the preimage π−1(Fi) of Fi.
For a real toric manifold (or small cover) of a simplex convex polytope

and its facets F , if the submanifolds π−1(F ) are all orientable, then the
integral homology group Hk(XR;Z) is a free abelian group of rank hk
([3, Corollary 3.8]). Here hk denotes the k-th component of the h-vector
(h0, h1, . . . , hn) of P (see [3, p.430]).

As a consequence of Theorem 1.1, we have the following corollary.

Corollary 2.2. Let P be a simple convex polytope of dimension
n ≥ 3 with m facets F1, F2,. . ., Fm, and let XR = X(P, λR) be a real
toric manifold for a characteristic function λR with the quotient map
π : XR → P . Assume that the following statements hold.

(1) F
(n−3)
i is non-empty for each 1 ≤ i ≤ m.

(2) XR(Fi, λ
i
R)\(X ′R(Fi, λ

i
R))◦ is connected and orientable for each 1 ≤

i ≤ m.

Then the integral homology group Hk(XR;Z) is a free abelian group of
rank hk for each 0 ≤ k ≤ n.
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Proof. For the proof, it suffices to note that ifXR(Fi, λ
i
R)\(X ′R(Fi, λ

i
R))◦

is connected and orientable for each 1 ≤ i ≤ m, then the submani-
fold XR(Fi, λ

i
R) is orientable by Theorem 2.1. Since π−1(Fi) is same as

XR(Fi, λ
i
R), the corollary follows immediately from [3, Corollary 3.8].

It is well-known that the real projective space RPn associated to a
n-simplex ∆n is orientable if and only if n is odd. Hence the following
corollary also holds.

Corollary 2.3. Let RPn be the real projective space of even di-
mension n ≥ 2 with the quotient map π : RPn → ∆n. Let (∆n−2)′

be a small tubular neighborhood of (∆n)(n−2) in ∆n, and let (RPn)′ =
π−1((∆n−2)′). Then the submanifold RPn\((RPn)′)◦ of RPn is non-
orientable.

Proof. For the proof, note first that RPn\((RPn)′)◦ is connected. In-

deed, RPn is path-connected and π−1((∆n)(n−2)) is of codimension 2 in
RPn, so that RPn\((RPn)′)◦ should be also path-connected.

Now, suppose that RPn\((RPn)′)◦ is orientable. Then it follows from
Theorem 2.1 that RPn would be orientable for even integer n ≥ 2, which
is a contradiction. This completes the proof of Corollary 2.3.
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