DOI QR코드

DOI QR Code

Evaluation for the flowers of compositae plants as whitening cosmetics functionality

국화과 꽃의 미백 화장품 기능성 검색

  • Lee, Yeong-Geun (Graduate School of Biotechnology and Department of Oriental Medicine Biotechnology, Kyung Hee University) ;
  • Lee, Junghoon (Graduate School of Biotechnology and Department of Oriental Medicine Biotechnology, Kyung Hee University) ;
  • Lee, Na-Yeong (Graduate School of Biotechnology and Department of Oriental Medicine Biotechnology, Kyung Hee University) ;
  • Kim, Nam-Kyun (Graduate School of Biotechnology and Department of Oriental Medicine Biotechnology, Kyung Hee University) ;
  • Jung, Da-Won (Graduate School of Biotechnology and Department of Oriental Medicine Biotechnology, Kyung Hee University) ;
  • Wang, Weiyi (Graduate School of Biotechnology and Department of Oriental Medicine Biotechnology, Kyung Hee University) ;
  • Kim, Yoosung (Graduate School of Biotechnology and Department of Oriental Medicine Biotechnology, Kyung Hee University) ;
  • Kim, Hyoung-Geun (Graduate School of Biotechnology and Department of Oriental Medicine Biotechnology, Kyung Hee University) ;
  • Nguyen, Thi Nhan (Graduate School of Biotechnology and Department of Oriental Medicine Biotechnology, Kyung Hee University) ;
  • Park, Haseung (Yesan Chrysanthemum Experiment station, Chungcheongnam-do Agricultural Research & Extension Services) ;
  • Baek, Nam-In (Graduate School of Biotechnology and Department of Oriental Medicine Biotechnology, Kyung Hee University)
  • Received : 2016.10.04
  • Accepted : 2016.10.17
  • Published : 2017.03.30

Abstract

18 flowers of Compositae family were collected and extracted in aqueous methanol (MeOH). The concentrated extract was partitioned into n-hexane, ethyl acetate (EtOAc), n-BuOH, and water fractions. The extract and fractions were evaluated for total phenolics, total flavonoids, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, and tyrosinase inhibition activity. n-Hexane and EtOAc fractions of Aster yomena, n-hexane fraction of Cosmos bipinnatus White, n-hexane and EtOAc fractions of C. bipinnatus Pink showed high total phenolics. And EtOAc fractions of A. yomena, C. bipinnatus White, C. bipinnatus Red, C. morifolium Froggy, and C. morifolium Himaya exhibited high total flavonoids. EtOAc fractions of A. yomena, C. bipinnatus White, C. bipinnatus Pink, C. morifolium Yellowmable, and MeOH extract of C. morifolium Rosa significantly scavenged DPPH radical. EtOAc fractions of C. chinensis, C. bipinnatus White, C. bipinnatus Red, C. morifolium Himaya, and C. morifolium Hongsim highly inhibited the tyrosinase activity. A. yomena, C. bipinnatus White, C. bipinnatus Pink, C. bipinnatus Red and C. morifolium Himaya are evaluated as good source for whitening cosmetics materials.

18종의 국화과 식물의 꽃을 MeOH로 추출하였다. 농축한 추출물은 용매의 극성을 이용하여 n-hexane, EtOAc, n-BuOH 및 물 분획으로 제조하였다. 각 추출물과 분획물에 대하여 총 페놀 양, 총 플라보노이드 양, DPPH radical scavenge 효과 및 tyrosinase 활성 억제 효과를 측정하였다. 쑥부쟁이(Aster yomena)의 n-hexane 및 EtOAc 분획, 하얀 코스모스(Cosmos bipinnatus White)의 n-hexane 분획, 분홍 코스모스(C. bipinnatus Pink)의 n-hexane 및 EtOAc 분획에서 총 페놀양이 높게 나타났으며, 쑥부쟁이(A. yomena)의 EtOAc의 분획, 하얀 코스모스(C. bipinnatus White)의 EtOAc 분획, 빨간 코스모스(C. bipinnatus Red)의 EtOAc 분획, 프로기(C. morifolium Froggy)의 EtOAc 분획, 그리고 하이마야(C. morifolium Himaya)의 EtOAc 분획에서 총 플라보노이드 양이 높게 나타났다. 쑥부쟁이(A. yomena)의 EtOAc 분획, 하얀 코스모스(C. bipinnatus White)의 EtOAc 분획, 분홍 코스모스(C. bipinnatus Pink)의 EtOAc 분획, 옐로우마블(C. morifolium Yellowmable)의 EtOAc 분획, 그리고 로사(C. morifolium Rosa)의 MeOH 추출물이 DPPH radical을 효과적으로 포획하였다. 서양들골나무(C. chinensis)의 EtOAc 분획, 하얀 코스모스(C. bipinnatus White)의 EtOAc 분획, 빨간 코스모스(C. bipinnatus Red)의 EtOAc 분획, 하이마야(C. morifolium Himaya)의 EtOAc 분획 그리고 홍심(C. morifolium Hongsim)의 EtOAc 분획이 tyrosinase 활성을 억제하였다. 수율 및 위의 실험 결과를 종합하였을 때 쑥부쟁이(A. yomena), 하얀 코스모스(C. bipinnatus White), 분홍 코스모스(C. bipinnatus Pink), 빨간 코스모스(C. bipinnatus Red) 및 하이마야(C. morifolium Himaya) 의 다섯 품종이 미백물질개발을 위한 좋은 자원으로 판단되었다.

Keywords

References

  1. Abeysinghe DC, Li X, Sun C, Zhang W, Zhou C, Chen K (2007) Bioactive compounds and antioxidant capacities in different edible tissues of citrus fruit of four species. Food Chem 104: 1338-1344 https://doi.org/10.1016/j.foodchem.2007.01.047
  2. Akihisa T, Yasukawa K, Oinuma H, Kasahara Y, Yamanouchi S, Takido M, Kumaki K, Tamura T (1996) Triterpene alcohols from the flowers of compositae and their anti-inflammatory effects. Phytochem 43: 1255-1260 https://doi.org/10.1016/S0031-9422(96)00343-3
  3. Behbahani I, Miller SA, Okeeffe DH (1993) A comparison of mushroom tyrosinase dopaquinone and dopachrome assays using diode-array spectrophotometry: Dopachrome formation vs ascorbate-linked dopaquinone reduction. Microchem J 47: 251-260 https://doi.org/10.1006/mchj.1993.1040
  4. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol 28: 25-30 https://doi.org/10.1016/S0023-6438(95)80008-5
  5. Cicerale S, Lisa L, Russell K (2010) Biological activities of phenolic compounds present in virgin olive oil. Int J Mol Sci 11: 458-479 https://doi.org/10.3390/ijms11020458
  6. Eun JB, Jung YM, Woo GJ (1996) Identification and determination of dietary fibers and flavonoids in pulp and peel of Korean tangerine. Korean J Food Sci Technol 28: 371-377
  7. Frankel EN, Kanner J, German JB, Parks E, Kinsella JE (1993) Inhibition of oxidation of human low density lipoproteins by phenolic substances in red wine. Lancet 43: 454-457
  8. Harper JL (1977) The Population Biology of Plants. Academic Press, London
  9. Hopkins WG (2006) Introduction to Plant Physiology. John Wiley & Sons Inc., New York
  10. Im H (2004) The developmental trend and future prospect of the function cosmetics market. Dissertation, Chung-Ang University
  11. Jang IC, Park JH, Park E, Park HR, Lee SC (2008) Antioxidative and antigenotoxic activity of extracts from cosmos (Cosmos bipinnatus) flowers. Plant foods hum nutr 63: 205-210 https://doi.org/10.1007/s11130-008-0086-8
  12. Jung YJ (2012) Kinetic analysis in tyrosinase inhibition activity of whitening agents. Dissertation, Soongsil University
  13. Kazumasa W, Shoauke I (2002) Advanced chemical methods in melanin determination. Pigment Cell Res 15: 174-183 https://doi.org/10.1034/j.1600-0749.2002.02017.x
  14. Kim IW, Shin DH, Choi U (1999) Isolation of antioxidative components from the bark of Rhus verniciflua stokes screened from some Chinese medical plants. Kor J Food Sci Technol 31: 885-863
  15. Kim KH (2005) Effects of horticultural therapy program on physiological and psychological responses of the hospice patients. Dissertation, Keimyung University
  16. Lee SM (2014) Consumer's recognition and actual usage of cosmetic ingredients and functional cosmetics. Dissertation, Seo Kyeong University
  17. Mason HS, Peterson EW (1965) Melanoproteins I. Reactions between enzyme-generated quinones and amino acids. BBA-Gen Subjects 111: 134-146 https://doi.org/10.1016/0304-4165(65)90479-4
  18. Rice-Evans CA, Miller NJ, Bolwell PG, Bramley PM, Pridham JB (1995) The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radic Res 22: 375-383 https://doi.org/10.3109/10715769509145649
  19. Sharma OP, Bhat TK (2009) DPPH antioxidant assay revisited. Food Chem 113: 1202-1205 https://doi.org/10.1016/j.foodchem.2008.08.008
  20. Shosuke I (2003) A chemist's view of melanogenesis. Pigments Cell Res 16: 230-236 https://doi.org/10.1034/j.1600-0749.2003.00037.x
  21. Sies H (1997) Oxidative stress: Oxidants and antioxidants. Exp Physiol 82: 291-295 https://doi.org/10.1113/expphysiol.1997.sp004024
  22. Singleton V, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 34: 593-598

Cited by

  1. Flavonoids from Chionanthus retusus (Oleaceae) Flowers and Their Protective Effects against Glutamate-Induced Cell Toxicity in HT22 Cells vol.20, pp.14, 2017, https://doi.org/10.3390/ijms20143517
  2. 대산(大蒜)을 포함하는 복합발효물의 에틸아세테이트 분획으로부터 Tyrosinase 저해활성 성분의 분리 및 동정 vol.33, pp.2, 2017, https://doi.org/10.7732/kjpr.2020.33.2.063