DOI QR코드

DOI QR Code

Automated static condensation method for local analysis of large finite element models

  • Boo, Seung-Hwan (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Oh, Min-Han (Offshore Engineering Research Department, Hyundai Heavy Industries)
  • Received : 2017.01.27
  • Accepted : 2017.02.27
  • Published : 2017.03.25

Abstract

In this paper, we introduce an efficient new model reduction method, named the automated static condensation method, which is developed for the local analysis of large finite element models. The algebraic multilevel substructuring procedure is modified appropriately, and then applied to the original static condensation method. The retained substructure, which is the local finite element model to be analyzed, is defined, and then the remaining part of the global model is automatically partitioned into many omitted substructures in an algebraic perspective. For an efficient condensation procedure, a substructural tree diagram and substructural sets are established. Using these, the omitted substructures are sequentially condensed into the retained substructure to construct the reduced model. Using several large practical engineering problems, the performance of the proposed method is demonstrated in terms of its solution accuracy and computational efficiency, compared to the original static condensation method and the superelement technique.

Keywords

Acknowledgement

Supported by : KAIST

References

  1. Agrawal, O.P., Danhof, K.J. and Kumar, R. (1994), "A superelement model based parallel algorithm for vehicle dynamics", Comput. Struct., 51(4), 411-423. https://doi.org/10.1016/0045-7949(94)90326-3
  2. Benfield, W.A. and Hruda R.F. (1971), "Vibration analysis of structures by component mode substitution", AIAA J., 9, 1255-1261. https://doi.org/10.2514/3.49936
  3. Bennighof, J.K. and Lehoucq, R.B. (2004), "An automated multilevel substructuring method for eigenspace computation in linear elastodynamics", SIAM J. Sci. Comput., 25(6), 2084-2106. https://doi.org/10.1137/S1064827502400650
  4. Boo, S.H. and Lee, P.S. (2017), "A dynamic condensation method using algebraic substructuring", Int. J. Numer. Meth. Eng., 109(12), 1701-1720. https://doi.org/10.1002/nme.5349
  5. Boo, S.H., Kim, J.G. and Lee, P.S. (2016), "A simplified error estimator for the Craig-Bampton method and its application to error control", Comput. Struct., 164, 53-62. https://doi.org/10.1016/j.compstruc.2015.11.003
  6. Boo, S.H., Kim, J.G. and Lee, P.S. (2016), "Error estimation method for automated multi-level substructuring method", Int. J. Numer. Meth. Eng., 106, 927-950. https://doi.org/10.1002/nme.5161
  7. Cardona, A. (2000), "Superelements modelling in flexible multibody dynamics", Multib. Syst. Dyn., 4(2-3), 245-266 https://doi.org/10.1023/A:1009875930232
  8. Craig, R.R. and Bampton M.C.C. (1968), "Coupling of substructures for dynamic analysis", AIAA J., 6(7), 1313-1319. https://doi.org/10.2514/3.4741
  9. Dvorkin, E.N. and Bathe, K.J. (1984), "A continuum mechanics based four-node shell element for general nonlinear analysis", Eng. Comput., 1(1), 77-88. https://doi.org/10.1108/eb023562
  10. Friswell, S.D., Garvey M.I. and Penny J. (1995), "Model reduction using dynamic and iterated IRS techniques", J. Sound Vib., 186(2), 311-323. https://doi.org/10.1006/jsvi.1995.0451
  11. George, A. (1973), "Nested dissection of a rectangular finite element mesh", SIAM J. Numer. Anal., 10(2), 345-363. https://doi.org/10.1137/0710032
  12. Guyan, R. (1965), "Reduction of stiffness and mass matrices", AIAA J., 3(2), 380. https://doi.org/10.2514/3.2874
  13. Han, J.S. (2014), "Krylov subspace-based model order reduction for Campbell diagram analysis of large-scale rotordynamic systems", Struct. Eng. Mech., 50(1), 19-36. https://doi.org/10.12989/sem.2014.50.1.019
  14. Irons, B.M. (1963), "Eigenvalue economisers in vibration problems", J. R. Aeronaut. Soc., 67, 526. https://doi.org/10.1017/S0001924000062618
  15. Jagadish, B.G., Anuj, P.S., Parampal, S.C. and Ranjan, G. (2007), "Free vibration analysis of rotating tapered blades using Fourier-p superelement", Struct. Eng. Mech., 27(2), 243-257. https://doi.org/10.12989/sem.2007.27.2.243
  16. Ju, F. and Choo, Y.S. (2005), "Super element approach to cable passing through multiple pulleys", Int. J. Solid. Struct., 42(11-12), 3533-3547. https://doi.org/10.1016/j.ijsolstr.2004.10.014
  17. Karypis, G. and Kumar, V. (1998), "METIS v4.0, A software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices", Technical Report, University of Minnesota, Minneapolis, MN, USA.
  18. Lee, P.S. and Bathe, K.J. (2004), "Development of MITC isotropic triangular shell finite elements", Comput. Struct., 82(11-12), 945-962. https://doi.org/10.1016/j.compstruc.2004.02.004
  19. Lee, Y.G., Lee, P.S. and Bathe, K.J. (2014), "The MITC3+ shell finite element and its performance", Comput. Struct., 138, 12-23. https://doi.org/10.1016/j.compstruc.2014.02.005
  20. Long, X., Yuan, W., Tan, K.H. and Lee, C.K. (2013), "A superelement formulation for efficient structural analysis in progressive collapse", Struct. Eng. Mech., 48(3), 309-331. https://doi.org/10.12989/sem.2013.48.3.309
  21. MacNeal, R.H. (1971), "Hybrid method of component mode synthesis", Comput. Struct., 1(4), 581-601. https://doi.org/10.1016/0045-7949(71)90031-9
  22. MSC Nastran (2014), Superelements User's Guide, MSC Software Corporation, Newport Beach, CA, USA.
  23. O'Callanhan, J. (1989), "A procedure for an improved reduced system (IRS) model", Proceedings of the 7th International Modal Analysis Conference, Las Vegas, USA, February.
  24. Rubin, S. (1975), "Improved component-mode representation for structural dynamic analysis", AIAA J., 13(8), 995-1006. https://doi.org/10.2514/3.60497
  25. Wilson, E.L. (1974), "The static condensation algorithm", Int. J. Numer. Meth. Eng., 8(1), 198-203. https://doi.org/10.1002/nme.1620080115
  26. Xia, Y. and Lin R. (2004), "A new iterative order reduction (IOR) method for eigensolutions of large structures", Int. J. Numer. Meth. Eng., 59, 153-172. https://doi.org/10.1002/nme.876

Cited by

  1. Towards improving the enhanced Craig-Bampton method vol.196, 2018, https://doi.org/10.1016/j.compstruc.2017.10.017
  2. A computational investigation and smooth-shaped defect synthesis for eddy current testing problems using the subregion finite element method pp.1432-2110, 2019, https://doi.org/10.1080/09349847.2018.1427819
  3. Structural modal reanalysis using automated matrix permutation and substructuring vol.69, pp.1, 2017, https://doi.org/10.12989/sem.2019.69.1.105
  4. 강성응축기법을 이용한 국부 비선형 정적 해석 vol.27, pp.1, 2017, https://doi.org/10.7837/kosomes.2021.27.1.193