References
- Auciello, N.M. (2013), "Dynamics analysis of rotating tapered beams using two general approaches", Proceedings of the Electronic International Interdisciplinary Conference, Zillina, September.
- Avcar, M. (2015), "Effects of rotary inertia, shear deformation and non-homogeneity on frequencies of beam", Struct. Eng. Mech., 55, 871-884. https://doi.org/10.12989/sem.2015.55.4.871
- Banerjee, J.R. and Jackson, D.R. (2013), "Free vibration of a rotating tapered Rayleigh beam: A dynamic stiffness method of solution", Comput. Struct., 124, 11-20. https://doi.org/10.1016/j.compstruc.2012.11.010
- Bauchau, O.A. and Hong, C.H. (1987), "Finite element approach to rotor blade modeling", J. Am. Helic. Soc., 32, 60-67. https://doi.org/10.4050/JAHS.32.60
- Bokaian, A. (1990), "Natural frequencies of beams under tensile axial loads", J. Sound Vib., 142, 481-498. https://doi.org/10.1016/0022-460X(90)90663-K
- Boor, C.D. (1972), "On calculating with B-splines", J. Approx. Theory, 6, 50-62. https://doi.org/10.1016/0021-9045(72)90080-9
- Bornemann, P.B. and Cirak, F. (2013), "A subdivision-based implementation of the hierarchical B-spline finite element method", Comput. Meth. Appl. Mech. Eng., 253, 584-598. https://doi.org/10.1016/j.cma.2012.06.023
- Dag, I. and Ozer, M.N. (2001), "Approximation of the RLW equation by the least square cubic B-spline finite element method" Appl. Math. Model., 25, 221-231. https://doi.org/10.1016/S0307-904X(00)00030-5
- Gardner, L.R.T., Gardner, G.A. and Dag, I. (1995), "A B-spline finite element method for regularized long wave equation", Commun. Numer. Meth. Eng., 11, 59-68. https://doi.org/10.1002/cnm.1640110109
- Giurgiutiu, V. and Stafford, R.O. (1977), "Semi-analytical methods for frequencies and mode shapes of rotor blades", Vertica, 1, 291-306.
- Gupta, A., Kiusalaas, J. and Saraph, M. (1991), "Cubic B-spline for finite element analysis of axisymmetric shells", Comput. Struct., 38, 463-468. https://doi.org/10.1016/0045-7949(91)90042-K
- Hoa, S.V. (1979), "Vibration of a rotating beam with tip mass", J. Sound Vib., 167, 369-381.
- Hodges, H.D. and Rutkowski, M.J. (1981), "Free-vibration analysis of rotating beams by a variable-order finite element method", AIAA J., 19, 1459-1466. https://doi.org/10.2514/3.60082
- Hughes, T.J.R., Cottrell, J.A. and Bazilevs, Y. (2005), "Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement", Comput. Meth. Appl. Mech. Eng., 194, 4135-4195. https://doi.org/10.1016/j.cma.2004.10.008
- Kagan, P., Fischer, A. and Bar-Yoseph, P.Z. (1998), "New B-spline finite element approach for geometric design and mechanical analysis", Int. J. Numer. Meth. Eng., 41, 435-458. https://doi.org/10.1002/(SICI)1097-0207(19980215)41:3<435::AID-NME292>3.0.CO;2-U
- Mao, Q. (2015), "AMDM for free vibration analysis of rotating tapered beams", Struct. Eng. Mech., 54, 419-432. https://doi.org/10.12989/sem.2015.54.3.419
- Mohammadi, R. (2014), "Sextic B-spline collocation method for solving Euler-Bernoulli beam models", Appl. Math. Comput., 241, 151-166.
- Mohammadnejad, M. (2015), "A new analytical approach for determination of flexural, axial and torsional natural frequencies of beams", Struct. Eng. Mech., 55, 655-674. https://doi.org/10.12989/sem.2015.55.3.655
- Nagaraj, V. T. and Shanthakumar, P. (1975), "Rotor blade vibration by the Galerkin finite element method", J. Sound Vib., 43, 575-577. https://doi.org/10.1016/0022-460X(75)90013-9
- Reddy, J.N. (2005), An Introduction to the Finite Element Method, Tata McGraw-Hill, New York, USA.
- Rostami, S., Shojaee, S. and Saffari, H. (2013), "An explicit time integration method for structural dynamics using cubic B-spline polynomial functions", Scientia Iranica, 20, 23-33.
- Sarkar, K., Ganguli, R. and Elishakoff, I. (2016), "Closed-form solutions for non-uniform axially loaded Rayleigh cantilever beams", Struct. Eng. Mech., 60, 455-470. https://doi.org/10.12989/sem.2016.60.3.455
- Shen, L., Liu, Z. and Wu, J.H. (2014), "B-spline finite element method based on node moving adaptive refinement strategy", Finite Elem. Anal. Des., 91, 84-94. https://doi.org/10.1016/j.finel.2014.07.007
- Shen, P.C. and Wang, J.G (1987), "Static analysis of cylindrical shells by using B-spline functions", Comput. Struct., 25, 809-816. https://doi.org/10.1016/0045-7949(87)90196-9
- Tang, A.Y., Li, X.F., Wu, J.X. and Lee, K.Y. (2015), "Flapwise bending vibration of rotating tapered Rayleigh cantilever beams", J. Constr. Steel Res., 112, 1-9. https://doi.org/10.1016/j.jcsr.2015.04.010
- Wang, G. and Wereley, N.M. (2004), "Free vibration analysis of rotating blades with uniform tapers", AIAA J., 42, 2429-2437. https://doi.org/10.2514/1.4302
- Zeid, I. (2007), Mastering CAD/CAM, Tata McGraw-Hill, New York, USA.
Cited by
- Transverse Vibration of Rotating Tapered Cantilever Beam with Hollow Circular Cross-Section vol.2018, pp.1875-9203, 2018, https://doi.org/10.1155/2018/1056397
- Quadratic B-spline finite element method for a rotating nonuniform Euler–Bernoulli beam pp.1550-2295, 2018, https://doi.org/10.1080/15502287.2018.1520757
- Finite element based stress and vibration analysis of axially functionally graded rotating beams vol.79, pp.1, 2017, https://doi.org/10.12989/sem.2021.79.1.023