DOI QR코드

DOI QR Code

Vibration analysis of embedded size dependent FG nanobeams based on third-order shear deformation beam theory

  • Ebrahimi, Farzad (Mechanical Engineering Department, Faculty of Engineering, Imam Khomeini International University) ;
  • Barati, Mohammad Reza (Mechanical Engineering Department, Faculty of Engineering, Imam Khomeini International University)
  • 투고 : 2015.07.13
  • 심사 : 2016.11.15
  • 발행 : 2017.03.25

초록

In this paper, free vibration characteristics of functionally graded (FG) nanobeams embedded on elastic medium are investigated based on third order shear deformation (Reddy) beam theory by presenting a Navier type solution for the first time. The material properties of FG nanobeam are assumed to vary gradually along the thickness and are estimated through the power-law and Mori-Tanaka models. A two parameters elastic foundation including the linear Winkler springs along with the Pasternak shear layer is in contact with beam. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. The nonlocal equations of motion are derived based on third order shear deformation beam theory through Hamilton's principle and they are solved applying analytical solution. According to the numerical results, it is revealed that the proposed modeling can provide accurate frequency results of the FG nanobeams as compared to some cases in the literature. The obtained results are presented for the vibration analysis of the FG nanobeams such as the influences of foundation parameters, gradient index, nonlocal parameter and slenderness ratio in detail.

키워드

참고문헌

  1. Alizada, A.N. and Sofiyev, A.H. (2011), "On the mechanics of deformation and stability of the beam with a nanocoating", J. Reinf. Plast. Compos., 30(18), 1583-1595. https://doi.org/10.1177/0731684411428382
  2. Alshorbagy, A.E., Eltaher, M.A. and Mahmoud, F.F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Math. Model., 35(1), 412-425. https://doi.org/10.1016/j.apm.2010.07.006
  3. Ansari, R., Gholami, R. and Rouhi, H. (2015), "Size-dependent nonlinear forced vibration analysis of magneto-electro-thermoelastic Timoshenko nanobeams based upon the nonlocal elasticity theory", Compos. Struct., 126, 216-226. https://doi.org/10.1016/j.compstruct.2015.02.068
  4. Ansari, R., Gholami, R. and Sahmani, S. (2011), "Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory", Compos. Struct., 94(1), 221-228. https://doi.org/10.1016/j.compstruct.2011.06.024
  5. Asghari, M., Rahaeifard, M., Kahrobaiyan, M. and Ahmadian, M.T. (2011), "The modified couple stress functionally graded Timoshenko beam formulation", Mater. Des., 32(3), 1435-1443. https://doi.org/10.1016/j.matdes.2010.08.046
  6. Aydogdu, M. (2009), "A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration", Physica E: Low-dimens. Syst. Nanostruct., 41(9), 1651-1655. https://doi.org/10.1016/j.physe.2009.05.014
  7. Civalek, O ., Demir, C. and Akgöz, B. (2010), "Free vibration and bending analyses of cantilever microtubules based on nonlocal continuum model", Math. Comput. Appl., 15(2), 289-298.
  8. Ebrahimi, F. and Barati, M.R. (2015), "A nonlocal higher-order shear deformation beam theory for vibration analysis of sizedependent functionally graded nanobeams", Arab. J. Sci. Eng., 40, 1-12. https://doi.org/10.1007/s13369-014-1492-x
  9. Ebrahimi, F. and Barati, M.R. (2016a), "Buckling analysis of nonlocal third-order shear deformable functionally graded piezoelectric nanobeams embedded in elastic medium", J. Brazil. Soc. Mech. Sci. Eng., 39(3), 937-952.
  10. Ebrahimi, F. and Barati, M.R. (2016b), "An exact solution for buckling analysis of embedded piezoelectro-magnetically actuated nanoscale beams", Adv. Nano Res., 4(2), 65-84. https://doi.org/10.12989/anr.2016.4.2.065
  11. Ebrahimi, F. and Barati, M.R. (2016c), "Buckling analysis of piezoelectrically actuated smart nanoscale plates subjected to magnetic field", J. Intel. Mater. Syst. Struct., 1045389X16672569
  12. Ebrahimi, F. and Barati, M.R. (2016d), "On nonlocal characteristics of curved inhomogeneous Euler-Bernoulli nanobeams under different temperature distributions", Appl. Phys. A, 122(10), 880. https://doi.org/10.1007/s00339-016-0399-7
  13. Ebrahimi, F. and Barati, M.R. (2016e), "A unified formulation for dynamic analysis of nonlocal heterogeneous nanobeams in hygro-thermal environment", Appl. Phys. A, 122(9), 792. https://doi.org/10.1007/s00339-016-0322-2
  14. Ebrahimi, F. and Barati, M.R. (2016f), "Dynamic modeling of a thermo-piezo-electrically actuated nanosize beam subjected to a magnetic field", Appl. Phys. A, 122(4), 1-18.
  15. Ebrahimi, F. and Barati, M.R. (2016g), "Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment", J. Vib. Control, 1077546316646239.
  16. Ebrahimi, F. and Barati, M.R. (2016h), "Vibration analysis of nonlocal beams made of functionally graded material in thermal environment", Euro. Phys. J. Plus, 131(8), 279. https://doi.org/10.1140/epjp/i2016-16279-y
  17. Ebrahimi, F. and Barati, M.R. (2016i), "Small scale effects on hygro-thermo-mechanical vibration of temperature dependent nonhomogeneous nanoscale beams", Mech. Adv. Mater. Struct., 1-13.
  18. Ebrahimi, F. and Barati, M.R. (2016j), "Temperature distribution effects on buckling behavior of smart heterogeneous nanosize plates based on nonlocal four-variable refined plate theory", Int. J. Smart Nano Mater., 7(3), 119-143. https://doi.org/10.1080/19475411.2016.1223203
  19. Ebrahimi, F. and Barati, M.R. (2017), "A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams", Compos. Struct., 159, 174-182. https://doi.org/10.1016/j.compstruct.2016.09.058
  20. Ebrahimi, F. and Hosseini, S.H.S. (2016a), "Thermal effects on nonlinear vibration behavior of viscoelastic nanosize plates", J. Therm. Stress., 39(5), 606-625. https://doi.org/10.1080/01495739.2016.1160684
  21. Ebrahimi, F. and Hosseini, S.H.S. (2016b), "Double nanoplatebased NEMS under hydrostatic and electrostatic actuations", Euro. Phys. J. Plus, 131(5), 1-19. https://doi.org/10.1140/epjp/i2016-16001-3
  22. Ebrahimi, F. and Nasirzadeh, P. (2015), "A nonlocal Timoshenko beam theory for vibration analysis of thick nanobeams using differential transform method", J. Theor. Appl. Mech., 53(4), 1041-1052.
  23. Ebrahimi, F. and Salari E (2015c), "Size-dependent thermoelectrical buckling analysis of functionally graded piezoelectric nanobeams", Smart Mater. Struct., 24(12), 125007. https://doi.org/10.1088/0964-1726/24/12/125007
  24. Ebrahimi, F. and Salari E (2015f), "Nonlocal thermo-mechanical vibration analysis of functionally graded nanobeams in thermal environment", Acta Astronautica, 113, 29-50. https://doi.org/10.1016/j.actaastro.2015.03.031
  25. Ebrahimi, F. and Salari, E. (2015a), "Size-dependent free flexural vibrational behavior of functionally graded nanobeams using semi-analytical differential transform method", Compos. Part B: Eng., 79, 156-169. https://doi.org/10.1016/j.compositesb.2015.04.010
  26. Ebrahimi, F. and Salari, E. (2015b), "A semi-analytical method for vibrational and buckling analysis of functionally graded nanobeams considering the physical neutral axis position", CMES: Comput. Model. Eng. Sci., 105(2), 151-181.
  27. Ebrahimi, F. and Salari, E. (2015d), Thermo-mechanical vibration analysis of nonlocal temperature-dependent FG nanobeams with various boundary conditions", Compos. Part B: Eng., 78, 272-290. https://doi.org/10.1016/j.compositesb.2015.03.068
  28. Ebrahimi, F. and Salari, E. (2015e), "Size-dependent free flexural vibrational behavior of functionally graded nanobeams using semi-analytical differential transform method", Compos. Part B: Eng., 79, 156-169. https://doi.org/10.1016/j.compositesb.2015.04.010
  29. Ebrahimi, F. and Salari, E. (2015g), "Effect of various thermal loadings on buckling and vibrational characteristics of nonlocal temperature-dependent FG nanobeams", Mech. Adv. Mater. Struct, 23(12), 1379-1397.
  30. Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2016b), "A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent nhomogeneous nanoplates", Int. J. Eng. Sci., 107, 169-182. https://doi.org/10.1016/j.ijengsci.2016.07.008
  31. Ebrahimi, F., Ghadiri, M., Salari, E., Hoseini, S.A.H. and Shaghaghi, G.R. (2015), "Application of the differential transformation method for nonlocal vibration analysis of functionally graded nanobeams", J. Mech. Sci. Technol., 29(3), 1207-1215. https://doi.org/10.1007/s12206-015-0234-7
  32. Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013a), "Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams", Compos. Struct., 99, 193-201. https://doi.org/10.1016/j.compstruct.2012.11.039
  33. Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2012), "Free vibration analysis of functionally graded size-dependent nanobeams", Appl. Math. Comput., 218(14), 7406-7420. https://doi.org/10.1016/j.amc.2011.12.090
  34. Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2013b), Static and stability analysis of nonlocal functionally graded nanobeams", Compos. Struct., 96, 82-88. https://doi.org/10.1016/j.compstruct.2012.09.030
  35. Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
  36. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
  37. Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
  38. Hosseini-Hashemi, S., Nahas, I., Fakher, M. and Nazemnezhad, R. (2014), "Surface effects on free vibration of piezoelectric functionally graded nanobeams using nonlocal elasticity", Acta Mechanica, 225(6), 1555-1564. https://doi.org/10.1007/s00707-013-1014-z
  39. Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56-58. https://doi.org/10.1038/354056a0
  40. Ke, L L. and Wang, Y.S. (2011), "Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory", Compos. Struct., 93(2), 342-350. https://doi.org/10.1016/j.compstruct.2010.09.008
  41. Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2012), "Nonlinear free vibration of size-dependent functionally graded microbeams", Int. J. Eng. Sci., 50(1), 256-267. https://doi.org/10.1016/j.ijengsci.2010.12.008
  42. Niknam, H. and Aghdam, M.M. (2015), "A semi analytical approach for large amplitude free vibration and buckling of nonlocal FG beams resting on elastic foundation", Compos. Struct., 119, 452-462. https://doi.org/10.1016/j.compstruct.2014.09.023
  43. Pasternak, P.L. (1954), "On a new method of analysis of an elastic foundation by means of two foundation constants", Gosudarstvennoe Izdatelstvo Literaturi po Stroitelstvu i Arkhitekture, Moscow.
  44. Peddieson, J., Buchanan, G.R. and McNitt, R.P. (2003), "Application of nonlocal continuum models to nanotechnology", Int. J. Eng. Sci., 41(3), 305-312. https://doi.org/10.1016/S0020-7225(02)00210-0
  45. Rahmani, O. and Jandaghian, A.A. (2015), "Buckling analysis of functionally graded nanobeams based on a nonlocal third-order shear deformation theory", Appl. Phys. A, 119(3), 1019-1032. https://doi.org/10.1007/s00339-015-9061-z
  46. Rahmani, O. and Pedram, O. (2014), "Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory", Int. J. Eng. Sci., 77, 55-70. https://doi.org/10.1016/j.ijengsci.2013.12.003
  47. Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004
  48. Simsek, M. (2014), "Large amplitude free vibration of nanobeams with various boundary conditions based on the nonlocal elasticity theory", Compos. Part B: Eng., 56, 621-628. https://doi.org/10.1016/j.compositesb.2013.08.082
  49. Simsek, M. and Reddy, J.N. (2013), "A unified higher order beam theory for buckling of a functionally graded microbeam embedded in elastic medium using modified couple stress theory", Compos. Struct., 101, 47-58. https://doi.org/10.1016/j.compstruct.2013.01.017
  50. Simsek, M. and Yurtcu, H.H. (2013), "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory", Compos. Struct., 97, 378-386. https://doi.org/10.1016/j.compstruct.2012.10.038
  51. Thai, H.T. (2012), "A nonlocal beam theory for bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 52, 56-64. https://doi.org/10.1016/j.ijengsci.2011.11.011
  52. Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y
  53. Uymaz, B. (2013), "Forced vibration analysis of functionally graded beams using nonlocal elasticity", Compos. Struct., 105, 227-239. https://doi.org/10.1016/j.compstruct.2013.05.006
  54. Wang, L. and Hu, H. (2005), "Flexural wave propagation in single-walled carbon nanotubes", Phys. Rev. B, 71(19), 195412. https://doi.org/10.1103/PhysRevB.71.195412
  55. Wang, Q. and Liew, K.M. (2007), "Application of nonlocal continuum mechanics to static analysis of micro-and nanostructures", Phys. Lett. A, 363(3), 236-242. https://doi.org/10.1016/j.physleta.2006.10.093
  56. Zhang, B., He, Y., Liu, D., Gan, Z. and Shen, L. (2014), "Sizedependent functionally graded beam model based on an improved third-order shear deformation theory", Euro. J. Mech. A/Solid., 47, 211-230. https://doi.org/10.1016/j.euromechsol.2014.04.009
  57. Zhang, Y.Q., Liu, G.R. and Xie, X.Y. (2005), "Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity", Phys. Rev. B, 71(19), 195404. https://doi.org/10.1103/PhysRevB.71.195404

피인용 문헌

  1. A general higher-order nonlocal couple stress based beam model for vibration analysis of porous nanocrystalline nanobeams vol.112, 2017, https://doi.org/10.1016/j.spmi.2017.09.010
  2. Magneto-hygro-thermal vibration behavior of elastically coupled nanoplate systems incorporating nonlocal and strain gradient effects vol.39, pp.11, 2017, https://doi.org/10.1007/s40430-017-0890-x
  3. Porosity-dependent vibration and dynamic stability of compositionally gradient nanofilms using nonlocal strain gradient theory 2017, https://doi.org/10.1177/0954406217729421
  4. Surface effects on vibration and buckling behavior of embedded nanoarches vol.64, pp.1, 2017, https://doi.org/10.12989/sem.2017.64.1.001
  5. Dynamic characteristics of curved inhomogeneous nonlocal porous beams in thermal environment vol.64, pp.1, 2017, https://doi.org/10.12989/sem.2017.64.1.121
  6. A simple quasi-3D sinusoidal shear deformation theory with stretching effect for carbon nanotube-reinforced composite beams resting on elastic foundation vol.13, pp.5, 2017, https://doi.org/10.12989/eas.2017.13.5.509
  7. Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles vol.27, pp.2, 2017, https://doi.org/10.12989/scs.2018.27.2.201
  8. A unified formulation for modeling of inhomogeneous nonlocal beams vol.66, pp.3, 2017, https://doi.org/10.12989/sem.2018.66.3.369
  9. Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory vol.6, pp.3, 2018, https://doi.org/10.12989/anr.2018.6.3.279
  10. A novel meshless particle method for nonlocal analysis of two-directional functionally graded nanobeams vol.41, pp.7, 2017, https://doi.org/10.1007/s40430-019-1799-3
  11. A review of mechanical analyses of rectangular nanobeams and single-, double-, and multi-walled carbon nanotubes using Eringen’s nonlocal elasticity theory vol.89, pp.9, 2017, https://doi.org/10.1007/s00419-019-01542-z
  12. Three-dimensional modelling of functionally graded beams using Saint-Venant's beam theory vol.72, pp.2, 2017, https://doi.org/10.12989/sem.2019.72.2.257
  13. Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle vol.8, pp.1, 2020, https://doi.org/10.12989/anr.2020.8.1.037
  14. Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory vol.10, pp.3, 2017, https://doi.org/10.12989/anr.2021.10.3.281
  15. Nonlinear vibration and stability of FG nanotubes conveying fluid via nonlocal strain gradient theory vol.78, pp.1, 2021, https://doi.org/10.12989/sem.2021.78.1.103
  16. Effect of nonlinear FG-CNT distribution on mechanical properties of functionally graded nano-composite beam vol.78, pp.2, 2021, https://doi.org/10.12989/sem.2021.78.2.117
  17. Wave dispersion of nanobeams incorporating stretching effect vol.31, pp.4, 2017, https://doi.org/10.1080/17455030.2019.1607623